Объяснение:
1. 25х – 17 - 4х - 5 = -13х + 14 + 34х
приведем подобные слагаемые, получим: 21х - 22 = 21х + 14
перенесем х в одну сторону, числа в другую, получим: 0х = 36
при умножении на 0 любого числа получится всегда 0, тоесть равенство никогда не будет верным — корней нет
2. 10 - 4х + 3 = 9х – 2 - 6х + 9 - 7х + 6
приведем подобные слагаемые, получим: 13 - 4х = -4х + 13
перенесем х в одну сторону, числа в другую, получим: 0х = 0
при умножении любого числа на 0 всегда получится 0, тоесть равенство всегда будет верно, при любом значении х
3. возьмем ширину за х, тогда длина будет 2х, P участка = длине забора, длина забора = 6х; 6х = 120, х = 20м 2х = 40м
Объяснение:
1. 25х – 17 - 4х - 5 = -13х + 14 + 34х
приведем подобные слагаемые, получим: 21х - 22 = 21х + 14
перенесем х в одну сторону, числа в другую, получим: 0х = 36
при умножении на 0 любого числа получится всегда 0, тоесть равенство никогда не будет верным — корней нет
2. 10 - 4х + 3 = 9х – 2 - 6х + 9 - 7х + 6
приведем подобные слагаемые, получим: 13 - 4х = -4х + 13
перенесем х в одну сторону, числа в другую, получим: 0х = 0
при умножении любого числа на 0 всегда получится 0, тоесть равенство всегда будет верно, при любом значении х
3. возьмем ширину за х, тогда длина будет 2х, P участка = длине забора, длина забора = 6х; 6х = 120, х = 20м 2х = 40м
Разложим числитель на множители:
Решаем уравнение x^2-22*x-23=0:
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-22)^2-4*1*(-23)=484-4*(-23)=484-(-4*23)=484-(-92)=484+92=576;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√576-(-22))/(2*1)=(24-(-22))/2=(24+22)/2=46/2=23;
x_2=(-√576-(-22))/(2*1)=(-24-(-22))/2=(-24+22)/2=-2/2=-1.
Поэтому заданное неравенство стало таким:
((х - 23)(х + 1))/(х + 1) < 0.
Если х не равен -1, то можно сократить: х -23 < 0.
Получаем: х < 23. Но с учётом точки разрыва функции в точке х = -1,
ответ такой: -1 < x < 23, x < -1.
Можно так записать: х ∈ (-∞; -1) ∪ (-1; 23)