1.
2х² - 9х + 9 = 0 |×2
2·2х² - 9·2х + 9·2 = 0
Вводим новую переменную y=2x:
у² - 9у + 18 = 0
По тереме Виета получаем:
{y₁ + y₂ = 9
{y₁*y₂ = 18
y₁ = 3
y₂ = 6
Вернемся к переменной х, где у = 2х.
х₁ = у₁/2 = 3/2= 1,5
х₂ = у₂/2 = 6/2=3
ответ: {1,5; 3}
2.
10х² - 11х + 3 = 0 |×10
10·10х² - 11·10х + 3·10 = 0
Вводим новую переменную y=10x:
у² - 11у + 30 = 0
По тереме Виета получаем:
{y₁ + y₂ = 11
{y₁*y₂ = 30
y₁ = 5
y₂ = 6
Вернемся к переменной х, где у = 10х.
х₁ = у₁/10 = 5/10= 0,5
х₂ = у₂/10 = 6/10=0,6
ответ: {0,5; 0,6}
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
1) У выражение 2x - 3 - (5x - 4). Для этого откроем скобки и приведем подобные слагаемые. Для открытия скобок будем использовать правило открытия скобок перед которыми стоит знак минус.
2x - 3 - (5x - 4) = 2x - 3 - 5x + 4 = 2x - 5x + 4 - 3 = x(2 - 5) + 1 = -3x + 1.
ответ: -3x + 1.
2) Зависит ли от значения х значение выражения 3(2x - 1) - 2(5x - 4) - (2 - 4x)?
Открываем скобки и приводим подобные:
3(2x - 1) - 2(5x - 4) - (2 - 4x) = 6x - 3 - (10x - 8) - 2 + 4x = 6x - 3 - 10x + 8 - 2 + 4x = 6x + 4x - 10x - 3 + 8 - 2 = 3. Выражение не зависит от переменной.
Объяснение:
2х² - 9x + 9 = 0 (умножим обе части равенства на 2)
(2х)² - 9(2x) + 18 = 0
замена: t = 2x
t² - 9t + 18 = 0 по т.Виета корни t₁ = 3; t₂ = 6
вернемcя к (х):
2х = 3 ---> x₁ = 1.5
2х = 6 ---> x₂ = 3
10х² - 11x + 3 = 0 (умножим обе части равенства на 10)
(10х)² - 11(10x) + 30 = 0
замена: t = 10x
t² - 11t + 30 = 0 по т.Виета корни t₁ = 5; t₂ = 6
вернемcя к (х):
10х = 5 ---> x₁ = 0.5
10х = 6 ---> x₂ = 0.6