Пусть х - сумма (все наследство) тогда первый получит 1000+1/10*(х-1000)= =1000+х/10-100=900+х/10 второй получит 2000+1/10*(х-(900+х/10+2000))= =2000+1/10*(х-900-х/10-2000)=2000+х/10-90-х/100-200=1710+9х/100 так как все сыновья получают одинаковую сумму, то приравняем эти результаты 900+х/10=1710+9х/100 х/10 - 9х/100=1710-900 х/100=810 х=81000 - сумма, которую оставил отец в наследство детям
проверка: первый получит 1000+(81000-1000)/10=1000+8000=9000 второй получит 2000+(81000-9000-2000)/10=2000+7000=9000 третий получит 3000+(81000-9000-9000-3000)/10= =3000+6000=9000 и .т.д. и сыновей, получается, будет 9))
Пусть 10a+b - двузначное число Впишем между его цифрами ноль, получим трёхзначное число 100a+b По условию, оно в 9 раз больше исходного числа, т.е. 100a+b=9(10a+b) 100a+b=90a+9b 100a-90a=9b-b 10a=8b a=8b:10 a=0,8b
при b=1 a=0,8*1=0,8 - не цифра при b=2 a=0,8*2=1,6 - не цифра при b=3 a=0,8*3=2,4 - не цифра при b=4 a=0,8*4=3,2 - не цифра при b=5 a=0,8*5=4 - цифра 45 - искомое число (45*9=405) при b=6 a=0,8*6=4,8- не цифра при b=7 a=0,8*7=5,6 -не цифра при b=8 a=0,8*8=6,4 -не цифра при b=9 a=0,8*9=7,2 -не цифра *** Для понимания хода решения и рассуждений показаны все варианты перебора
Итак, существует только одно двузначное число, обладающее указанными свойствами. Оно равно 45 ответ: 45