
![(3x - 7) log_{5x - 11}(x^2 - 8x + 17) \geq 0 \\ (3x - 7) [ log_{5x - 11}(x^2 - 8x + 17) - 0] \geq 0 \\ (3x - 7) [ log_{5x - 11}(x^2 - 8x + 17) - log_{5x - 11}1] \geq 0 \\ (3x - 7)(5x - 11 - 1)( {x}^{2} - 8x + 17 - 1) \geq 0 \\ (3x - 7)(5x - 12)( {x}^{2} - 8x + 16) \geq 0 \\ 3(x - \frac{7}{3} ) \times 5(x - \frac{12}{5} ) \times (x - 4) ^{2} \geq 0](/tpl/images/0923/2443/16fb8.png)
![+ + + [ \frac{7}{3} ] - - - [ \frac{12}{5} ] + + + [4] + + + _ x](/tpl/images/0923/2443/6d01b.png)
![x \in ( - \infty; \frac{7}{3} ] \: \cup \: [ \frac{12}{5} ; + \infty)](/tpl/images/0923/2443/ea0e4.png)
y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении