М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Дидар2901
Дидар2901
21.02.2023 00:55 •  Алгебра

Нужна . 7 класс. #представьте в виде произведения: a) a^n b^2n+a^n b^n b) 15x^2n+1 - 25x^n+1 # вынесите за скобки множитель: a) (ax+ay)^2 b) (-3p+6)^3 c) (5q-30)^3 d) (2a-8)^4

👇
Ответ:
444477
444477
21.02.2023

1) a) a^n b^{2n}+a^n b^n=a^n (b^{n})^2+a^n b^n=a^n b^n(b^n+1)=(ab)^n(b^n+1)\\ \\ b) 15x^{2n+1}-25x^{n+1}=5(3x^{n+1+n}-5x^{n+1})=5(3x^{n+1}x^{n}-5x^{n+1})=\\ \\ =5x^{n+1}(3x^n-5)

2) a) (ax+ay)^2=(a\cdot(x+y))^2=a^2\cdot(x+y)^2\\\\ b) (-3p+6)^3=(-3\cdot(p-2))^3=(-3)^3\cdot(p-2)^3=-27(p-2)^3\\\\ c) (5q-30)^3=(5\cdot(q-6))^3=5^3\cdot(q-6)^3=125(q-6)^3\\\\ d) (2a-8)^4=(2\cdot(a-4))^4=2^4\cdot(a-4)^4=16(a-4)^4

4,6(92 оценок)
Ответ:
sabinagamzaeva
sabinagamzaeva
21.02.2023

A)

a^n b^{2n}+a^n b^n = a^n b^n *(b^n+1)

B)

15x^{2n+1} - 25x^{n+1}=5x^{n+1}*(3x^n-5)



A) (ax+ay)² = a²(x+y)²

B) (-3p+6)³ = (- 3)³*(p - 2)³ = - 27 * (p - 2)³

C) (5q-30)³ = 5³ * (q - 6)³ = 125 * (q - 6)³

D) (2a-8)⁴ = 2⁴ * (a - 4)⁴ = 16 * (a - 4)⁴

4,7(75 оценок)
Открыть все ответы
Ответ:

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Пример: 5x+2y=10

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y  Z k0

Утверждение 1.

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно Утверждение 2.

Если m и n уравнения (1) взаимно числа, то это уравнение имеет по крайней мере одно решение.

Утверждение 3.

Если коэффициенты m и n уравнения (1) являются взаимно числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y  Z

Утверждение 4.

Если m и n – взаимно числа, то всякое решение уравнения (2) имеет вид  

5) Домашнее задание. Решить уравнение в целых числах:

9x – 18y = 5

x + y= xy

Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?

Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

Урок 2.

1) Организационный момент

2) Проверка домашнего задания

1) 9x – 18y = 5

НОД (9;18)=9

5 не делится нацело на 9, в целых числах решений нет.

2) x + y= xy

Методом подбора можно найти решение

ответ: (0;0), (2;2)

4,8(38 оценок)
Ответ:
morshchininao
morshchininao
21.02.2023

Пусть y = uv, тогда y' = u'v + uv':

Решим левый интеграл:

cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdx%7D%7Bcosx%7D%3B%5C%5C%20tg%5Cfrac%7Bx%7D%7B2%7D%3Dt%20%3D%3E%20cosx%20%3D%20%5Cfrac%7B1-t%5E2%7D%7B1%2Bt%5E2%7D%20%3D%3E%20dx%20%3D%20%5Cfrac%7B2%7D%7B1%2Bt%5E2%7Ddt%5C%5C%20%20%5Cint%20%5Cfrac%7B2%281%2Bt%5E2%29%7D%7B%281%2Bt%5E2%29%281-t%5E2%29%7D%20dt%20%3D%20%5Cint%20%5Cfrac%7B2%7D%7B%281-t%29%281%2Bt%29%7Ddt%20%3D%20%5Cint%20%28%20%5Cfrac%7B1%7D%7B1-t%7D%20%2B%20%5Cfrac%7B1%7D%7B1%2Bt%7D%29dt%20%3D%20ln%281-t%29%2Bln%28%201%2Bt%29%20%3D%20ln%7C1-t%5E2%7C%20%3D%20ln%7C1-tg%5E2%5Cfrac%7Bx%7D%7B2%7D%7C%20%20%5C%5C" title="\int \frac{dx}{cosx};\\ tg\frac{x}{2}=t => cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\">

Возвращаемся к исходному:

4,5(56 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ