условно сходится
Объяснение:
Для выяснения сходимости ряда используем признак Лейбница.
Очевидно, что
1. , так как с увеличением номера n увеличивается знаменатель, а с ростом знаменателя дробь становится все меньше и меньше;
2.
Надеюсь, данный факт ясен.
Два условия выполнены, следовательно, ряд по признаку Лейбница сходится.
Выясним вопрос относительно абсолютной сходимости. Для этого нужно рассмотреть соответствующий ряд из модулей исходного ряда.
Напомню, что модуль "съедает" множитель вида . Значит, общий член нового ряда имеет вид .
Для установления сходимости данного ряда используем интегральный признак Коши. Это можно сделать, поскольку действительнозначная функция
неотрицательна, непрерывна и убывает на интервале
Можно рассмотреть несобственный интеграл. Исследуем его на сходимость. подробности в приложенном файле.
Итак, получена бесконечность, стало быть, несобственный интеграл расходится.
Ряд сходится либо расходится вместе с несобственным интегралом. То есть, расходится.
Таким образом, сам ряд сходится. Но ряд из модулей расходится, что исключает абсолютную сходимость ряда. А сходящийся ряд, не сходящийся абсолютно, сходится условно.
А) Вероятность поражения цели одним выстрелом 0,8
Вероятность, что цель не будет поражена первым выстрелом = 1 - 0,8 = 0,2
Вероятность, что цель не будет поражена вторым выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена двумя выстрелами подряд: 0,2 * 0,2 = 0,04.
Таким образом, вероятность поражения цели двумя выстрелами 1-0,04 = 0,96
Б) Аналогично рассуждая, вероятность, что цель не будет поражена третьим выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена тремя выстрелами подряд: 0,2 * 0,2 * 0,2 = 0,008.
Таким образом, вероятность поражения цели тремя выстрелами 1-0,008 = 0,992
Таким образом, вероятность поражения цели тремя выстрелами возрастает по сравнению с вероятностью поражения цели двумя выстрелами на 0,992-0,96=0,032, т.е. примерно на 3% .
В) Вероятно, на практике систему ограничивают двумя разрешениями на выстрел, поскольку третий выстрел недостаточно существенно повышает вероятность поражения цели.
1). Обозначим стоимость 1 кг сахара за х
Известно, что 2 кг сахара стоят на 1 рубль меньше, чем 9 кг соли
Стоимость 2 кг сахара равна 2х
Стоимость 9 кг соли равна 2х + 1
Следовательно, стоимость 1 кг соли равна
(2х + 1)/9
2). За 10 кг сахара и 7 кг соли заплатили 255 рублей.
Следовательно, имеем уравнение:
10х + 7*(2х + 1)/9 = 255
Решим это уравнение. Умножим обе части на 9
90х + 7*(2х + 1) = 2295
Раскроем скобки
90х + 14х + 7 = 2295
104х = 2288
х = 22
3). Итак, один кг сахара стоит 22 руб.
По формуле из 1) найдем стоимость 1 кг. соли:
(2х + 1)/9 = (2*22 + 1)/9 = 45/9 = 5 руб.
1 кг сахара стоит 22 руб.
1 кг соли стоит 5 руб.