М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
IlyaPikarychev
IlyaPikarychev
19.12.2022 04:21 •  Алгебра

Решите уравнение 7 класс 7(y-6)=5(y+1)-3(y+2)

👇
Ответ:
скрытник
скрытник
19.12.2022

7(y-6)=5(y+1)-3(y+2)

7y-42=5y+5-3y-6

7y-5y+3y=5-6+42

5y=41

y=41/5=8 1/5

4,8(44 оценок)
Ответ:
RokiFoki
RokiFoki
19.12.2022

Решите уравнение 7 класс 7(y-6)=5(y+1)-3(y+2)

4,8(12 оценок)
Открыть все ответы
Ответ:
fantastik03
fantastik03
19.12.2022

нужно рассматривать две разных ситуации:

1) x>=0

тогда y = 2x - 1/2 x^2 - x = - 1/2 x^2 + x

парабола, ветви вниз, корни 0 и 2

т.е. справа от оси У рисуем только часть этой параболы (от х=0)

2) x < 0

тогда у = 2*(-х) - 1/2 x^2 - (-x) = -2x -1/2 x^2 + x = -1/2 x^2 - x

парабола, ветви вниз, корни 0 и -2

т.е. слева от оси У рисуем только часть этой параболы (до х=0)

(получится похоже на то, как птицу-чайку рисуют ---два крыла...)

а вот про прямую у = kx ---точка (0; 0) принадлежит графику... и прямой с любым k...

т.е. общая точка будет всегда (т.е. нет таких k...)

 

4,6(100 оценок)
Ответ:
maZIK007
maZIK007
19.12.2022
Все задания сводятся к решению квадратных неравенств. Если у неравенства коэф-т при x^2<0, то можно умножить обе части на (-1).
Общий вид квадратного трехчлена ax^2+bx+c. Для решения неравенства
ax^2+bx+c>=(<)0 можно применять графический
Решая квадратное уравнение находим точки пересечения параболы с осью OX.
Если a>0, то ветви направлены вверх
x1 и x2 - корни уравнения, причем x1<x2
ax^2+bx+c>0, если x∈(-∞;x1)∨(x2;+∞)
ax^2+bx+c<0, если x∈(x1;x2)
1.3x^2-2x-4=0⇒x=(1+(-)√1+3*4)/3⇒x1=(1-√13)/3; x2=(1+√13)/3; x1>x2
3x^2-2x-4>0, если x∈(-∞;(1-√13)/3)∨((1+√13)/3;+∞)
Оценим значения корней
3<√13<4⇒4<1+√13<5⇒4/3<(1+√13)/3<5/3⇒
4; 6 и 2006 принадлежат интервалу ((1+√13)/3;+∞)
-4<-√13<-3⇒-3<1-√13<-2⇒-1<(1-√13)/3<-2/3⇒
-3; -2 принадлежат интервалу ((-∞;1-√13)/3)
Решениями неравенства не являются 0 и 1
2. (a^2-16)/(2a^2-3a+3)>0⇒(a^2-16)*(2a^2-3a+3)>0 и 2a^2-3a+3≠0
Найдем ОДЗ: 2a^2-3a+3=0; D=b^2-4ac=3^2-2*3*4=9-24<0⇒ 2a^2-3a+3>0 для всех a. Значит и (a^2-16)>0⇒(a-4)(a+4)>0
a1=-4; a2=4 - корни уравнения (a-4)(a+4)=0⇒
a∈(-∞;4)∨(4;+∞)
3. y=√2x/(6-x)
ОДЗ: 2x/(6-x)>=0⇒x*(6-x)>=0 и (6-x)≠0; x≠6
x1=0; x2=6 - корни уравнения x*(6-x)=0 ⇒
x∈(-∞;0]∨(6;+∞)
4. .I3x2-4x-4I=4+4x-3x2⇒I3x^2-4x-4I=-(3x^2-4x-4)⇒по определению модуля
Нужно решить неравенство 3x^2-4x-4<0
3x^2-4x-4=0⇒x=(2+(-)√4+4*3)/3⇒x1=(2-4)/3=-2/3; x2=(2+4)/3=2⇒
x∈(-2/3;2)
Во всех этих случаях хорошо сделать эскиз параболы, Для этого на оси x отметить корни уравнения и знать направление ветвей.
Неравенство >0 для тех значений x, где ветви параболы выше оси x.
Неравенство<0 для тех значений x, где ветви параболы ниже оси x.
4,6(20 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ