Объяснение:
Первая труба наполняет бассейн за х часов,тогда за час - 1/х.
Вторая труба наполняет бассейн за (х+10) часов,тогда за час - 1/(х+10).
Вместе за час работы они наполнят бассейн (1/х)+ (1/(х+10)).
(1/х)+ (1/(х+10))= (х+10+х)/(х*(х+10))=(2х+10) / (х²+10х)
При совместной работе они наполняют бассейн за 12 часов:
1 ÷ (2х+10) / (х²+10х) = 12
1 * (х²+10х) / (2х+10) = 12
(х²+10х) / (2х+10) = 12
12*(2х+10) = х²+10х
24х+120-х²-10х=0
-х²+14х+120=0
х²-14х-120=0
х₁+х₂=14
х₁х₂= -120
х₁= -6 не подходит по условию
х₂=20 часов - первая труба наполняет бассейн.
20+10=30 часов - вторая труба наполняет бассейн.
Объяснение:
Первая труба наполняет бассейн за х часов,тогда за час - 1/х.
Вторая труба наполняет бассейн за (х+10) часов,тогда за час - 1/(х+10).
Вместе за час работы они наполнят бассейн (1/х)+ (1/(х+10)).
(1/х)+ (1/(х+10))= (х+10+х)/(х*(х+10))=(2х+10) / (х²+10х)
При совместной работе они наполняют бассейн за 12 часов:
1 ÷ (2х+10) / (х²+10х) = 12
1 * (х²+10х) / (2х+10) = 12
(х²+10х) / (2х+10) = 12
12*(2х+10) = х²+10х
24х+120-х²-10х=0
-х²+14х+120=0
х²-14х-120=0
х₁+х₂=14
х₁х₂= -120
х₁= -6 не подходит по условию
х₂=20 часов - первая труба наполняет бассейн.
20+10=30 часов - вторая труба наполняет бассейн.
y^2 - 9 - (y^2 + 4y + 4) = y^2 - 9 - y^2 - 4y - 4 = - 4y - 13
y = - 2,5
- 4*(-2,5) - 13 = 10 - 13 = - 3