Дана систему:
{x^2+2y^2=17
{x^2-2xy=-3.
Используем метод подстановки. Из второго уравнения определяем:
у = (x^2 + 3)/2х и подставим в первое.
x^2 + 2((x^4 + 6x^2 + 9)/4x^2) = 17. Приводим к общему знаменателю.
4x^4 + 2x^4 + 12x^2 + 18 = 68x^2. Получаем биквадратное уравнение.
6x^4 - 56x^2 + 18 = 0, сократим на 2: 3x^4 - 28x^2 + 9 = 0.
Замена x^2 = t. 3t^2 - 28t + 18 = 0.
Ищем дискриминант:
D=(-28)^2-4*3*9=784-4*3*9=784-12*9=784-108=676;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(2root676-(-28))/(2*3)=(26-(-28))/(2*3)=(26+28)/(2*3)=54/(2*3)=54/6=9;
t_2=(-2root676-(-28))/(2*3)=(-26-(-28))/(2*3)=(-26+28)/(2*3)=2/(2*3)=2/6=1/3.
Получаем 4 ответа: х = +-3 и х = +-(1/√3)
х = 3, у = (9 + 3)/(2*3) = 12/6 = 2,
х = -3, у = (9 + 3)/(2*(-3)) = 12/(-6) = -2,
х = (1/√3), у = ((1/3) + 3)/(2*(1/√3)) = 5/√3,
х = (-1/√3), у = ((1/3) + 3)/(2*(-1/√3)) = -5/√3.
15
Объяснение:
В этой задаче важно правильно расставить точки А, Б, В, Г на круге. Обратите внимание, они не обязательно должны идти по порядку! Общая логика такая. Самая большая дуга (в данном случае АБ=60) должна охватывать или точку Г или точку В (см. рисунок), иначе выстроить дуги не получится. В результате, точка А будет лежать напротив точки Б, а точки В и Г автоматически расположатся напротив друг друга (как показано на рисунке).
Далее, по условию задания точно можно обозначить длины дуг АГ=35 и АВ=45. Дуга АБ=60 может пройти как через точку Г, так и через точку В (это нужно выяснить). Аналогично, дуга ВГ может проходить или через точку Б, или через точку А.
Дуга АБ может проходить как через Г, так и через В (результаты должны получаться равными). Если АБ проходит через Г, то сегмент ГБ=60-35=25 и дуга ВБ=40-25=15. Если же дуга АБ проходит через В, то длина ВБ=60-45=15. Все верно.
можно решить ,
заменив 10/х=t
t=(1/t)-½
t=(2-t)/t
t²=2-t
t²+t-2=0
(t+2)(t-1)=0
откуда
t¹=-2
t²=1
откуда х=10/t
x¹=-5
x²=10