1. Сначала вычисляем общее количество возможных вариантов события. Ты можешь взять 1 из любых 41+59=100 карандашей.
А — событие, при котором ты вытягиваешь зелёный карандаш. Вариантов исходов событий — 41.
Тогда P(A)=41/100 = 0,41
2. Общее количество возможных вариантов события расстановки шаров вычисляем как 5!=1×2×3×4×5=120.
B — событие, при котором составляется верная комбинация. Вариантов исходов событий — 1.
Тогда P(B)=1/120
3. Общее число возможных вариантов события вычисляем как 5!/2! = (2!×3×4×5)/2! = 60.
С — событие, при котором число кратно 5. Число кратно 5 тогда, когда оно заканчивается единицей. Число таких событий вычисляем как 4!/2! = (2!×3×4)/2! = 12.
Тогда P(C)=12/60=1/5=0,2.
4. Вероятность того, что попадётся тетрадь в клетку в первой стопке — 2/3. Вероятность того, что попадётся тетрадь в клетку во второй стопке — 2/5.
P(F) — событие, при котором из двух пачек вытягивают тетрадь в клетку. Подсчитаем число исходов, благоприятствующих этому событию (среди 3 тетрадей 1 будет в клетку): 1 тетрадь в клетку можно взять из 4 тетрадей в клетку С при этом остальные 2 тетради должны быть в линейку; взять же 2 тетради в линейку из 6 тетрадей в линейку можно С Следовательно, число благоприятствующих исходов равно С1/4 С2/6:
Р(F)=С1/4*С2/6:С3/10= 20/72=5/18.
5. Общее число возможных вариантов событий равно 36.
D — событие, при котором сумма очков делится на 9. Таких вариантов, благоприятствующих событию, — 4 (3+6; 6+9; 5+4; 4+5).
Тогда P(D)=4/36=1/9.
Насчёт четвёртого я не уверен.
1,7 дм; 5,1 дм; 4 дм
Объяснение:
1) вводим неизвесную.
пусть та сторона, что в задаче названа "одна" будет х
2) строим зависимости х от других элементов.
тогда сторона, от которой "одна меньше в 3 раза" будет 3х
сторона, "одна меньше от третьей на 2,3 дм" будет х + 2,3
периметр = сумма трех сторон.
3) составляем уравнение
х + 3х + (х+2,3) = 10,8
4) решаем уравнение
х + 3х + (х+2,3) = 10,8
5х = 8,5
х = 1,7
5) находим стороны 2 и 3
3х = 5,1
х+2,3 = 4
6) делаем проверку 1,7 + 5,1 + 4 = 10,8 - сходится.
7) оформляем ответ
прим.: не надо система там, где можно обойтись просто уравнением