Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов. Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
Точки окружности А(0;0), В (0;8), С (6;0). Для каждой точки составим уравнение окружности. (x-0)^2 +(y-0)^2=R^2; (x-0)^2 +(y-8)^2=R^2; (x-6)^2 +(y-0)^2=R^2.
Приравняем первое и второе уравнение и получим x^2+y^2=x^2+(y-8)^2;⇒y^2=(y-8)^2⇒ y=8. Теперь приравняем первое и третье уравнения x^2+y^2=(x-6)^2 +y^2;⇒ x^2=(x-6)^2;⇒x=6.Осталось подставить в любое из уравнений значения х -у найти радиус, лучше в 1-ое, так легче. 6^2 +8^2=R^2;⇒ R^2=100;⇒ R=10. Уравнение окружности будет таким (x-6)^2 +(y-8)^2=100