
разделим на три класса:
, где + обозначает операцию объединения и изначает, что множества
дисъюнктны.



.
делится на два (сумма нечетных чисел четна), то есть выражение все равно делится на два, первое условие выполнено. Докажем, что x делится на 3:
, то рассмотрим три случая:
так как
.
для каких-то
, то есть
.
.
для каких-то
, то есть
.
выражение
делится на 6.
Так как квадраты чисел неотрицательны, то х²≥0 при любых значениях х.Наименьшее значение , которое принимает х² равно нулю, а наибольшего не существует, так как значение х² может только увеличиваться. То есть 0≤х²<+∞. А теперь от этого неравенства, от всех его частей отнимем 5, получим 0-5≤х²-5<∞-5. Получим -5≤х²-5<∞. От бесконечности какое не отнимай постоянное число ( или прибавляй к ней) она всё равно останется БЕСКОНЕЧНОСТЬЮ.
Можно было нарисовать график у=х²-5. Это парабола с вершиной в точке (0,-5), ветви вверх. Мысленно ( или не мысленно, а явно) спроектируй все точки, лежащие на параболе на ось ОУ.Увидишь, что все у-ки попадут в промежуток [0,∞), то есть у∈ [0,∞).