Пусть было сделано n обменных операций 1-го типа и k операций 2-го типа (по порядку как они шли в условии). Тогда количество золотых монет в результате изменится на величину -4n+5k=0 т.к. их общее количество не изменилось, а при каждой операции 1-го типа золотых уменьшается на 4, и 2-го типа количество золотых увеличивается на 5. На операции каждого типа количество медных монет увеличивается на 1, значит всего было сделано 45 операций, т.е. n+k=45. Отсюда n=45-k, -4(45-k)+5k=0, k=20, n=25. Аналогично, как с золотыми, количество серебряных изменится на величину 5n-8k=5*25-8*20=125-160=-35. Т.е. количество серебряных монет уменьшилось на 35.
1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях. 2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч. 3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2. 4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти. Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.