23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
5 значений на первую позицию и 4 на вторую. Если поменять местами (мальчик - девочка, девочка - мальчик) результат не измениться. К каждому из 5-ти мальчику можно поставить по одной из 4-ех девочке. То есть и так далее... М(1) + Д(1), М(1) + Д(2), М(1) + Д(3), М(1) + Д(4) М(2) + Д(1), М(2) + Д(2), М(2) + Д(3), М(2) + Д(4) М(3) + Д(1), М(3) + Д(2), М(3) + Д(3), М(3) + Д(4) М(4) + Д(4), М(1) + Д(2), М(4) + Д(3), М(4) + Д(4) М(5) + Д(1), М(5) + Д(2), М(5) + Д(3), М(5) + Д(4) как видно получилась таблица с 5-ю строками и 4-ю столбцами.
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число