1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
Пусть это чилос х. Тогад по первому условию: х=13k+10, где k - какое то натуральное число, и по второму условию: х=8l+2, где l - какое то натуральное число. Для начала сделаем оценку: х<1000 13k+10<1000 13k<990 k<77 Теперь приравниваем те два равентва: 13k+10=8l+2 13k+8=8l 13k=8(l-1) Правая часть равенства делится на 8, значит, и левая тоже. Т.к. 13 не кратно 8, то k делится на 8. Самое большое число k<77 и кратное 8, это k=72 Подставляем в равентсво и получаем, что х=946 Проверкой убеждаемся, что оно подходит.
х2 +2х - 15 = 0
мн = 15 м+н = 2 следует м = -3 н = 5
х2 - 3х + 5х - 15 = 0
( х2 - 3х) + (5х -15) = 0
х(х - 3) + 5(х - 3) = 0
(х - 3)*(х + 5) = 0
Имеет два решения х1 = 3 х2 = -5 отсюда самое меньшее -5