Пусть за (х) дней одна работу может выполнить Катя за (у) дней одна работу может выполнить Алиса, x < y тогда за 1 день Катя может выполнить (1/х) часть работы, за 1 день Алиса может выполнить (1/у) часть работы. (1/х) + (1/у) = 1\6 0.6*х + 0.4*у = 12 система (х+у) / (ху) = 1/6 6х + 4у = 120
6х + 6у = ху 6х = 120 - 4у
6*(120 - 4у + 6у) = (120 - 4у)*у 6*120 + 12у = 120у - 4у² у² - 27у + 180 = 0 по т.Виета корни 12 и 15 у = 12, тогда х = (120 - 48)/6 = 20-8 = 12 у = 15, тогда х = (120 - 60)/6 = 20-10 = 10 ответ: за 10 дней может напечатать курсовую Катя, т.к. она печатает быстрее Алисы.
Решение y = (корень 4 степени из x^2-5x+6) + (корень 5 степени из x+3)/(корень квадратный из -x+2) x² - 5x + 6 ≥ 0 - x + 2 > 0, x < 2, x ∈( - ∞; 2) x1 = - 1; x2 = 6 x ∈(- ∞; - 1] [6; + ∞) ответ: D(y) = (- ∞; -1]
2. Упростите выражение ((корень 3 степени из a^2)-(2*корень 3 степени из ab)) / ((корень 3 степени из a^2) - (4*корень третьей степени из ab) + (4*корень 3 степени из b^2)) [(a²)^(1/3) - 2*(ab)^(1/3)] / [(a²)^(1/3) - 4*(ab)^(1/3) + 4(b²)^(1/3)] = [a^(1/3) *(a^(1/3) - 2b^(1/3)] / [(a^(1/3) - 2b^(1/3)]² = a^(1/3) / [(a^(1/3) - 2b^(1/3)]
5^6 (пять в шестой степени), (2/2*2/5)^15, x/y^19, a^37, 5,3^47, c^n