М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tt5tt5291
tt5tt5291
20.05.2022 10:28 •  Алгебра

При каком значении "a" значение выражения 2+cosx ( 5*cosx+ a*sinx) будет равно 1, хотя бы при одном значении "x" ?

👇
Ответ:
Gagarinaa
Gagarinaa
20.05.2022

2+cosx


х = 180 градисов, т к cos 180=-1




 5*cosx+ a*sin

х = 90 гр, а а=1

х=90 градусов, т к кос 90 гр = 0

а син 90 градусов = 1

4,6(48 оценок)
Открыть все ответы
Ответ:
Hellwood12
Hellwood12
20.05.2022

(-1; -1)

Объяснение:

При пересечении двух графиков (в данном случае прямых) координаты совпадают. Следовательно, мы можем приравнять функции заданных графиков.

-2х - 3 = 2х + 1  

-2х - 2х = 1 + 3

-4х = 4

х = -1

Значение х - (-1). Мы можем подставить значение х в любую функцию заданных графиков.

у = -2х - 3

у = -2 * (-1) - 3

у = 2 - 3

у = -1

 

ИЛИ

у = 2х + 1

у = 2* (-1) + 1

у = -2 + 1

у = -1

Результат один и тот же. Графики данных функций (у = -2х - 3 и у = 2х + 1) пересекаются в точке, координаты которой (-1; -1)

4,6(54 оценок)
Ответ:
Qwerty23459484
Qwerty23459484
20.05.2022

\frac{3x^{2}e^{x^{3}}+3x^{7}e^{x^{3}}-5x^{4}e^{x^{3}}}{x^{10}+2x^{5}+1}

Объяснение:

y=\frac{e^{x^{3}}}{1+x^{5}};

Производная дроби находится по следующей формуле:

(\frac{u}{v})'=\frac{u'v-uv'}{v^{2}};

y'=(\frac{e^{x^{3}}}{1+x^{5}})';

y'=\frac{(e^{x^{3}})' \cdot (1+x^{5})-e^{x^{3}} \cdot (1+x^{5})'}{(1+x^{5})^{2}};

Функция

e^{x^{3}}

является сложной функцией. Производная сложной функции находится по следующей формуле:

(f(g(x)))'=f'(g(x)) \cdot g'(x),

отсюда получаем

(e^{x^{3}})'=(e^{x^{3}})' \cdot (x^{3})';

Если ввести замену

t=x^{3},

то выражение

e^{x^{3}}

преобразуется как

e^{t}.

Производная последнего выражения является табличным значением:

(e^{t})'=e^{t};

Возвращаясь к замене, получаем:

e^{x^{3}}.

Производная второго множителя находится по следующей формуле:

(x^{\alpha})'=\alpha x^{\alpha-1}, \quad \alpha \in \mathbb {R}.

(x^{3})'=3x^{3-1}=3x^{2};

Подставим полученные значения в произведение:

(e^{x^{3}})'=e^{x^{3}} \cdot 3x^{2}=3x^{2}e^{x^{3}};

Подставим значение этой производной в дробь:

y'=\frac{3x^{2}e^{x^{3}} \cdot (1+x^{5})-e^{x^{3}} \cdot (1+x^{5})'}{(1+x^{5})^{2}};

Производная суммы равна сумме производных:

(u+v)'=u'+v';

(1+x^{5})'=1'+(x^{5})';

1 — константа. Производная константы равна нулю.

(1+x^{5})'=0+(x^{5})'=5x^{5-1}=5x^{4};

y'=\frac{3x^{2}e^{x^{3}} \cdot (1+x^{5})-e^{x^{3}} \cdot 5x^{4}}{(1+x^{5})^{2}};

y'=\frac{3x^{2}e^{x^{3}}+3x^{7}e^{x^{3}}-5x^{4}e^{x^{3}}}{(1+x^{5})^{2}};

y'=\frac{3x^{2}e^{x^{3}}+3x^{7}e^{x^{3}}-5x^{4}e^{x^{3}}}{x^{10}+2x^{5}+1};

4,7(55 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ