Вкаждой клеточке клетчатой доски 7 x 11 сидит жук. в какой то момент времени все жуки переползают в одну из соседних клеточек, которые имеют с ними общую сторону. докажите, что после этого, какая-то из клеток будет пустой (т.е. без жука)
Допустим обратное. Пусть и после переползания жуков в соседние клетки, все клетки останутся заполненными жуками. Достаточно рассмотреть вариант, когда в каждой паре соседних клеток все жуки просто меняются местами. То есть в первой строке жук из первого столбца переползает во второй столбец, а жук из второго столбца переползает в первый столбец, жук из третьего столбца перебирается в четвертый столбец, а жук из четвертого в третий и так далее по другим строкам. Однако, поскольку число столбцов нечетно мы сможем выполнить эти операции по всем строкам лишь до шестого столбца. В итоге у нас останется еще один столбец. Перемещаем жуков теперь по строкам таким же образом. Жук из первой строки седьмого столбца переползает во вторую строку седьмого столбца, а жук из второй строки в первую и так далее. Но, так как и количество строк у нас является нечетным, то в итоге жук из последней 11-й строки должен будет переползти или в десятую строку или в шестой столбец своей строки и его клетка окажется пустой. Приходим к противоречию, следовательно одна из клеток обязательно окажется пустой.
N = n*k+0,75*4*n= n* (k+3) Для начала мы знаем, что все обычные места (не откидные) заняты. Чтобы вычислить кол-во людей на них, надо умножить кол-во рядов (n) на кол-во кресел в каждом (K) Теперь откидные кресла. Так как осталось 25 % свободно,занято 100-25=75%. Чтобы проценты перевести в числовой эквивалент, надо 75 разделить на 100, получим 0,75 Всего откидных кресел 4 (в каждом ряду) умноженное на кол-во рядов, то есть на все те же N. Итого у нас занято откидных кресел 0,75*4*n Складываем зрителей на обычных и откидных креслах, выносим общий множитель (n) за скобки и производим умнижение известных чисел (0,75*4=3) В итоге получаем N = n* (k+3)
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е (3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета: x1+x2=-b/a=5-3p x1*x2=c/a=3p^2-11p-6 Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2. Выделим полный квадрат: (x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6). По условию, эта сумма квадратов равна 65. Получаем: (5-3p)^2-2(3p^2-11p-6)=65 Решим его: 25-30p+9p^2-6p^2+22p+12-65=0 3p^2-8p-28=0 D=(-8)^2-4*3*(-28)=400 p1=(8-20)/6=-2 p2=(8+20)/6=14/3 Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен. Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят. Теперь найдем корни уравнения: 1)p=-2 x^2-11x+28=0 x1=4; x2=7 2)p=14/3 x^2+9x+8=0 x1=-8; x2=-1 ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
Допустим обратное. Пусть и после переползания жуков в соседние клетки, все клетки останутся заполненными жуками. Достаточно рассмотреть вариант, когда в каждой паре соседних клеток все жуки просто меняются местами. То есть в первой строке жук из первого столбца переползает во второй столбец, а жук из второго столбца переползает в первый столбец, жук из третьего столбца перебирается в четвертый столбец, а жук из четвертого в третий и так далее по другим строкам. Однако, поскольку число столбцов нечетно мы сможем выполнить эти операции по всем строкам лишь до шестого столбца. В итоге у нас останется еще один столбец. Перемещаем жуков теперь по строкам таким же образом. Жук из первой строки седьмого столбца переползает во вторую строку седьмого столбца, а жук из второй строки в первую и так далее. Но, так как и количество строк у нас является нечетным, то в итоге жук из последней 11-й строки должен будет переползти или в десятую строку или в шестой столбец своей строки и его клетка окажется пустой. Приходим к противоречию, следовательно одна из клеток обязательно окажется пустой.