Стороны прямоугольника равны 6 см и 10 см.
Объяснение:
Пусть одна сторона прямоугольника равна х см,
тогда другая сторона прямоугольника равна (х+4) см.
По условию задачи, площадь прямоугольника равна 60 см².
Составим и решим уравнение:
х(х+4)=60
х²+4х-60=0
D = 4²-4*1*(-60)= 16+240 = 256 =16²
x₁=(-4+16)/2 = 12/2 = 6
x₂=(-4-16)/2 = -20/2 =-10 <0 - данный корень не является решением задачи, т.к. сторона прямоугольника не может быть отрицательным числом.
Итак, х=6 см - одна сторона прямоугольника
х+4=6+4=10 (см ) - другая сторона прямоугольника.
Решение
Пусть дана АВСD - трапеция, в которой: основания ВС = 5см, АD = 15см, диагонали ВD = 16см, АС = 12см.
Через точку С проводим СК параллельно диагонали ВD см.
Рассмотрим треугольник АСК. АК = АD + DК = 15 + 5 = 20(см).
Находим его площадь по формуле Герона. р = 0,5(20 + 12 + 16) =24(см)
S = √[24(24 - 20)(24 - 12)(24 - 16)] = 96(см²)
Проводим высоту трапеции СМ, она будет и высотой треугольника АСК. Находим СМ.
Площадь треугольника АСК: S = 1/2 * (AK*CM), отсюда
СМ = 2S / AK = (2*96) / 20 =9,6(см)
Тогда площадь трапеции равна 0,5(5 + 15)*9,6 = 96(см²)
ответ: 96 см²