М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
PolinaRomanova174
PolinaRomanova174
26.05.2021 03:08 •  Алгебра

У=4х-6 при каком значении аргумента значение функции равно 3; -14 0 ; -2

👇
Ответ:
pech228
pech228
26.05.2021
y = 3 \\ 3 = 4x - 6 \\ 4x = 9 \\ x = \frac{9}{4} = 2 \frac{1}{4}
y = - 14 \\ - 14 = 4x - 6 \\ 4x = - 8 \\ x = - 2
y = 0 \\ 0 = 4x - 6 \\ 4x = 6 \\ x = \frac{6}{4} = 1 \frac{1}{2}
y = - 2 \\ - 2 = 4x - 6 \\ 4x = 4 \\ x = 1
4,8(35 оценок)
Открыть все ответы
Ответ:
Соня12811
Соня12811
26.05.2021
№1
Применяем ограниченность синуса и косинуса
-1≤cosx≤1
Преобразуем правую часть по формуле
cos^2 \alpha = \frac{1+cos2 \alpha }{2}

\frac{1+8cos^2x}{4}= \frac{1+ 8\cdot \frac{1+cos2x}{2} }{4}= \frac{1+ 4\cdot (1+cos2x)}{4}= \frac{5+ 4\cdot cos2x}{4}

-1 \leq cos2x \leq 1 \\ \\ -4 \leq 4\cdot cos2x \leq 4 \\ \\ -4+5 \leq 5+4\cdot cos2x \leq 4+5 \\ \\1 \leq 5+4\cdot cos2x \leq 9 \\ \frac{1}{4} \leq \frac{5+ 4\cdot cos2x}{4} \leq \frac{9}{4}
ответ Множество значений
[ \frac{1}{4};2 \frac{1}{4}]

Применяем ограниченность синуса и косинуса
-1≤sinx≤1
Преобразуем правую часть по формуле
sin \alpha cos \alpha = \frac{sin2 \alpha }{2}

sin2xcos2x+2= \frac{sin4x}{2}+2 \\ \\ -1 \leq sin4x \leq 1 \\ \\ -\frac{1}{2} \leq \frac{sin4x}{2} \leq \frac{1}{2} \\ \\ -\frac{1}{2} +2\leq \frac{sin4x}{2}+2 \leq \frac{1}{2} +2\\ \\ 1 \frac{1}{2} \leq \frac{sin4x}{2}+2 \leq 2\frac{1}{2}

ответ Множество значений
[1 \frac{1}{2};2 \frac{1}{2}]

 №2 Найти область определения функции
у=1/(sinx-sin3x)
Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0
Найдем при каких х знаменатель равен 0. Решаем уравнение
sinx-sin3x=0
Применяем формулу
sin \alpha -sin \beta =2sin \frac{ \alpha - \beta }{2}\cdot cos \frac{ \alpha + \beta }{2}

2sin \frac{ x- 3x }{2}\cdot cos \frac{ x + 3x }{2}=0 \\ \\ 2sin(-x)\cdot cos 2x=0 \\ \\ \left[\begin{array}{ccc}sin(-x)=0\\cos2x=0\end{array}\right
Так как синус - нечетная функция, то
sin(-x)=-sinx 

sinx=0  ⇒    x=πk,  k∈Z
cos2x=0  ⇒    2x=(π/2)+πn,  n∈Z  ⇒    x=(π/4)+(π/2)n, n∈ Z
ответ. Область определения: x≠πk,  k∈Z
                                               x≠(π/4)+(π/2)n, n∈ Z
 
4,6(12 оценок)
Ответ:
дильназ149
дильназ149
26.05.2021

a=-12 и a=4

Объяснение:

Первый модуль обращается в ноль при x=-2, второй - при x=\frac{a}{2}.

Пусть сначала

\frac{a}{2} =-2\\a=-4

Тогда уравнение принимает вид |x+2|=-4 и, очевидно, не имеет решений.

Пусть теперь

\frac{a}{2} -2

a-4

Если x \in [\frac{a}{2} ;+\infty), то оба модуля раскрываются с плюсом и уравнение принимает вид:

x+2+a-2x=4\\x=a-2

Полученный x будет корнем уравнения, если он принадлежит рассматриваемому отрезку, то есть если a удовлетворяет системе неравенств

\left \{ {{a-2\geq \frac{a}{2} } \atop {a-4}} \right.

Решение системы: a\geq 4

Если x \in [-2 ;\frac{a}{2}), то уравнение принимает вид

x+2+2x-a=4\\x=\frac{a+2}{3}

Полученный x будет корнем уравнения, если a удовлетворяет системе:

\left \{ {{-2\leq \frac{a+2}{3} -4}} \right.

Решение системы: a4

Пусть, наконец, x \in (-\infty ;-2). Тогда уравнение принимает вид

-2-x+2x-a=4\\x=a+6

Полученный x будет корнем уравнения, если a удовлетворяет системе:

\left \{ { a+6-4}} \right.

Эта система не имеет решений.

Теперь пусть \frac{a}{2}, то есть a.

Если x\in[-2; +\infty), то

x+2-2x+a=4\\x=a-2

Система:

\left \{ { a-2\geq -2} \atop {a

Нет решений.

Если x\in[\frac{a}{2} ; -2), то

-2-x-2x+a=4\\x=\frac{a-6}{3}

Система:

\left \{ {{\frac{a}{2} \leq \frac{a-6}{3}

Решение системы: a\leq -12

И наконец, если x \in (-\infty ;-\frac{a}{2} ), то

-x-2+2x-a=4\\x=a+6

Система:

\left \{ {{a+6

Решение: a

Из вышесказанного очевидно, что

При a\in(-\infty; -12) - два решения

При a=-12 - одно решение

При a\in(-12; -4) - нет решений

При a\in[-4; 4) - нет решений

При a=4 - одно решение

При a\in(4; +\infty) - два решения

Таким образом, уравнение имеет одно решение при a=-12 и a=4

4,4(9 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ