![1)\; \; \lim\limits _{x \to \infty}\frac{4x-10}{3+x}=\Big [\frac{:x}{:x}\Big ]=\lim\limits _{x \to \infty}\frac{4-\frac{10}{x}}{\frac{3}{x}+1}=\frac{4-0}{0+1}=4\\\\\star \; \; \frac{1}{x}\to 0\; \; \; pri\; \; \; x\to \infty \; \; \star \\\\ili:\; \; \lim\limits _{x \to \infty}\frac{4x-10}{3+x}=\lim\limits _{x \to \infty}\frac{4x}{x}=\lim\limits _{x \to \infty}4=4\\\\\star \; \; (4x-10)\sim 4x\; \; ,\; \; (3+x)\sim x\; \; \; pri\; \; \; x\to \infty\; \; \star](/tpl/images/0949/3281/c12ac.png)
![2)\; \; \lim\limits _{x \to \infty}\frac{5x^3-7x}{x^2+8x}=\Big [\frac{:x^3}{:x^3}\Big ]=\lim\limits _{x \to \infty}\frac{5-\frac{7}{x^2}}{\frac{1}{x}+\frac{8}{x^2}}=\Big [\frac{5-0}{0+0}=\frac{5}{0}\Big ]=\infty \\\\\star \; \; \frac{7}{x^2}\to 0\; ,\; \; \frac{1}{x}\to 0\; ,\; \; \frac{8}{x^2}\to 0\; \; \; \; pri\; \; \; x\to \infty \; \; \star \\\\ili:\; \; \lim\limits _{x \to \infty}\frac{5x^3-7x}{x^2+8x}=\lim\limits _{x \to \infty}\frac{5x^3}{x^2}=\lim\limits _{x \to \infty}5x=\Big [5\cdot \infty \Big ]=\infty](/tpl/images/0949/3281/09a5a.png)

![3)\; \; \lim\limits _{x \to 3}\frac{x^2-5x+6}{x^3-27}=\Big [\frac{0}{0}\Big ]=\lim\limits _{x \to 3}\frac{(x-3)(x-2)}{(x-3)(x^2+3x+9)}=\lim\limits _{x \to 3}\frac{x-2}{x^2+3x+9}=\\\\=\frac{3-2}{3^2+3\cdot 3+9}=\frac{1}{27}\\\\\star \; \; x^2-5x+6=0\; \; \Rightarrow \; \; x_1=3\; ,\; x_2=2\; \; (teorema\; Virta)\; \; \Rightarrow \\\\x^2-5x+6=(x-3)(x-2)\; \; \star \\\\\star \; \; a^3-b^3=(a-b)(a^2+ab+b^2)\; \; \star](/tpl/images/0949/3281/1c31c.png)
Объяснение:
( x + 2 ) ^ 4 - 4 * ( x + 2 ) ^ 2 - 5 = 0 ;
Пусть ( х + 2 ) ^ 2 = а, тогда:
а ^ 2 - 4 * a - 5 = 0 ;
a1 = ( 4 - √36 ) / ( 2 * 1 ) = ( 4 - 6 ) / 2 = - 2 / 2 = - 1 ;
a2 = ( 4 + √36 ) / ( 2 * 1 ) = ( 4 + 6 ) / 2 = 10 / 2 = 5 ;
Тогда:
1 ) ( x + 2 ) ^ 2 = - 1 ;
x ^ 2 + 4 * x + 4 = - 1 ;
x ^ 2 + 4 * x + 4 + 1 = 0 ;
x ^ 2 + 4 * x + 5 = 0 ;
Нет корней ;
2 ) ( x + 2 ) ^ 2 = 5 ;
x ^ 2 + 4 * x + 4 = 5 ;
x ^ 2 + 4 * x - 1 = 0 ;
x1 = ( -4 - √20 ) / ( 2·1 ) = -2 - √5 ;
x2 = ( -4 + √20 ) / ( 2·1 ) = -2 + √5 ;
ответ: х = -2 - √5 и х = -2 + √5