а) a1 = 30, a2 = 24, d = 24 — 30 = -6
Формула n-ого члена: a(n) = 36 — 6n
b) Найдем количество положительных чисел в этой прогрессии
{ a(n) = 36 — 6n > 0
{ a(n+1) = 36 — 6(n+1) < 0
Раскрываем скобки
{ a(n) = 36 — 6n >= 0
{ a(n+1) = 36 — 6n — 6 = 30 — 6n < 0
Переносим n направо и делим неравенства на 6
{ 6 >= n
{ 5 < n
Очевидно, n = 5
a(5) = 36 — 6*5 = 6
a(6) = 36 — 6*6 = 0
c) Определим количество чисел, если их сумма равна -150.
S = (2a1 + d*(n-1))*n/2 = -150
(2*30 — 6*(n-1))*n = -150*2 = -300
(66 — 6n)*n = -300 = -6*50
Сокращаем на 6
(11 — n)*n = -50
n^2 — 11n — 50 = 0
(n — 25)(n + 2) = 0
Так как n > 0, то n = 25
1) Если а^2 - 64 = 0 , а^2 = 64 ; а = - + 8 , то
х^2 - 7х = 0
х•( х - 7 ) = 0
х = 0 ; 7
2) Если а =/ - + 8 , то
Квадратное уравнение имеет 2 корня, если его дискриминант больше нуля ( D > 0 ) , 1 корень - D = 0 =>
D = 49 - 4 • ( a^2 - 64 ) = 49 - 4a^2 + 256 = - 4a^2 + 305
- 4a^2 + 305 > 0
a^2 - 305/4 < 0
( a - V305/2 )( a + V305/2 ) < 0
Решаем методом интервалов:
+++++( - V305/2)-------( V305/2 )+++++>X
a принадлежит ( - V305/2 ; V305/2 )
х1 = ( 7 + V( 305 - 4a^2 ) ) / 2
х2 = ( 7 - V( 305 - 4a^2 ) ) / 2
• Проверим разные знаки корней:
• { х1 < 0
{ х2 > 0
{ ( 7 + V( 305 - 4a^2 ) ) / 2 < 0
{ ( 7 - V( 305 - 4a^2 ) ) / 2 > 0
Решений нет
• { ( 7 + V( 305 - 4a^2 ) ) / 2 > 0
{ ( 7 - V( 305 - 4a^2 ) ) / 2 < 0
( 7 - V( 305 - 4a^2 ) ) / 2 < 0
7 - V( 305 - 4a^2 ) < 0 V( 305 - 4a^2 ) > 7
305 - 4а^2 > 49
4а^2 < 256
а^2 < 64
а^2 - 64 < 0
( а - 8 )( а + 8 ) < 0
+++++++(-8)---------(8)+++++++>а
- 8 < a < 8
____( - V305/2)//////(-8)/\/\/\/\/\/\/(8)//////(V305/2)___>a
Значит, - 8 < а < 8
ОТВЕТ: ( - 8 ; 8 )