x^2+6x+9<0,
(x+3)^2<0,
нет решений; (x+3)^2≥0, x∈R
-x^2+6x-5≥0,
a=-1<0 - ветви параболы направлены вниз, часть параболы над осью Ох (≥0) расположена между корнями,
-x^2+6x-5=0,
x^2-6x+5=0,
по теореме Виета х_1=1, x_2=5,
1≤x≤5,
x∈[1;5]
x^2-4x+3≥0,
a=1>0 - ветви параболы направлены вверх,
x^2-4x+3=0,
x_1=1, x_2=3 - часть параболы над осью Ох расположена вне корней,
x≤1, x≥3,
x∈(-∞;1]U[3;+∞)
x^2-6x+8≤0,
a=1>0 - ветви параболы - вверх,
x^2-6x+8=0,
x_1=2, x_2=4 - часть параболы под осью Ох (≤0) расположена между корнями,
2≤x≤4,
x∈[2;4]
1. x+x+2=38 (взяли первое чётное число за х, второе соответственно за х+2, ибо оно тоже чётное)
2x=36
x=18
Первое число 18, второе 20 (т.к. первое число у нас х, а второе х+2)
2. х+х+2+х+4=18 (первое число чётное за х, второе за х+2, третье за х+4)
3х=12
х=4
Первое число 4, второе 6, третье 8.
3. х+х+2=24 (тут по аналогии с предыдущими, но за х взяли нечётное число)
2х=22
х=11
Первое число 11, второе 13.
4. х+х+2+х+4=21 (тоже за х взяли нечётное)
3х=15
х=5
Первое число 5, второе 7, третье 9.