Руслан, прибавлять надо 3, никакого минуса там нет. Уравнение: (В+14)/(В+3)=(В+7)/В+37/88 Проблема в том, что оно не решается в целых числах. Если домножить на 88*B*(B+3), то получится 88*B*(B+14) = 88(B+3)(B+7) + 37*B*(B+3) 88*B^2 + 88*14*B = 88(B^2 + 10B + 21) + 37*B^2 + 37*3*B 88*B^2 + 88*14*B = 88*B^2 + 88*10*B + 21*88 + 37*B^2 + 111*B Вычитаем 88*B^2 слева и справа и умножаем числа 1232*B = 37*B^2 + 880*B + 111*B + 1848 37*B^2 - 241*B + 1848 = 0 А теперь находим дискриминант D = 241^2 - 4*37*1848 = 58081 - 273504 = -215423 < 0 Решений нет. Но даже если мы что-то напутали, и D = +215423, или D = 58081 + 273504 = 331585 Все равно это не квадрат целого числа, и B иррационально.
«Просчитав» несколько первых переливаний, нетрудно обнаружить, что после первого, третьего, пятого переливаний в обоих сосудах будет по ½ л воды. Необходимо доказать, что так будет после любого переливания с нечетным номером. Если после переливания с нечетным номером 2k-1 в сосудах было по ½ л, то при следующем переливании из второго сосуда берется 1/(2k + 1) часть, так что в первом сосуде оказывается — 1/2 + (2/2(2k + 1)) = (k + 1)/(2k + 1) (л). При следующем переливании, имеющем номер 2k + 1, из него берется 1/(2k + 2) часть и остается (k + 1)/(2k + 1)-(k + 1)/((2k + 1)(2k + 1)) = 1/2 (л). Поэтому после седьмого, девятого и вообще любого нечетного переливания в сосудах будет по ½ л воды.