Пусть скорость пешехода х км/ч, а велосипедиста — (х+10) км/ч. Пусть встреча произошла на расстоянии у от В. АВ = 4 км - по условию, ВС=у.
АСВ
велосипедист проехал АВ+ВС = 4+у за время (4+у) /х+10,
а пешеход АВ - ВС = 4-у за время (4-у) /х, что равно 24 мин = 2/5 часа.
Система: (4+у) /x+10 = 2/5,
(4-y) / x = 2/5. Запиши в виде дробей и перемножь накрест, как в пропорциях.
Найди у.
2х=20-5у (1) х=20-5у/2
(2) 2х+20=20+5у
Из (1) в (2) подставим 20-5у/2 вместо х:
(2): 2(20-5у/2)+20=20+5у
10у=20
у= 2
подставляем 2 в (1)
х=20-10/2=5 км/ч
скорость пешехода
2222 - 111 - 99 + 5 = 2017.
Посмотрим, чему может равняться число . Так как выражение "- EEE - AA + R" больше или равно - 1086 (= - 999 - 88 + 1), то должно быть довольно близко к 2017. 3333 и 1111 не подходят, значит = 2222.
Теперь обратим внимание на число EEE. Пусть оно равно 222 или больше. Тогда у нас получится 2222 - 222 = 2000 или меньше. Теперь от этого числа нужно отнять некоторое двузначное и прибавить однозначное, то есть еще уменьшить число. Но так невозможно будет получить 2017. Значит, EEE = 111.
Мы имеем: 2222 - 111 = 2111. Если мы отнимем 94, то получим ровно 2017, но тогда R = 0 (ненатуральное). Тогда мы можем подставить A = 95, 96, 97, 98, 99 и получим соответственно R = 1, 2, 3, 4, 5. Но А должно состоять из одной цифры, так что A = 99, R = 5.
Примечание:
При решении ребуса мы учитывали то, что все числа являются натуральными, и не повторяются (то есть Y не может быть равно R и т. д.).
а=0
√3*0+16=√16=4
2)√3*16+16=√64=8
3)√3*(-5)+16=√1=1
4)√3*17+16=√67
2.√х-у=√2,89-0,64=√2,25=1,5