Рассматривая линейную функцию вида y=kx+m, особо выделяют случай, когда m=0. Тогда линейная функция принимает вид y=kx. Графиком линейной функции y=kx является прямая, проходящая через начало координат. Эта прямая является графиком линейной функции y=kx, так как проходит через начало координат. Нужно лишь определить значение коэффициента k.Из формулы линейной функции y=kx получим, что k=yx. Поэтому, для определения коэффициента k достаточно взять любую точку на прямой и найти отношение ординаты этой точки к её абсциссе. Прямая проходит через точку M(4;2), а для этой точки имеем 24=0,5. Значит, k=0,5 и данная прямая является графиком линейной функции y=0,5x. График линейной функции y=kx обычно строят так: берут точку (1;k) (если x=1, то из равенства y=kx находим, что y=k) и проводят прямую через эту точку и начало координат.
1) А - событие Р(А) - вероятность события p₁=0.9/5=0.18 p₂=0.8/12=0.07 p₃=0.7/8=0.0875 p₁⁻=0.9 p₂⁻=0.8 p₃⁻=0.7 P=p₁*p₁⁻+p₂*p₂⁻+p₃*p₃⁻ P=0.18*0.9+0.07*0.8+0.0875*0.7 P(A)≈0.28 Р_А(В₁) - вероятность события для отличников Р_А(В₂) - для хорошистов Р_А(В₃) - для троечников P_А(B₁)=P(B₁)*P_B₁(A)/P(A)=0.9*0.18/0.28=0.57 P_A(B₂)=0.8*0.07/0.28=0.2 P_A(B₃)=0.7*0.085/0.28≈0.22
2) p=P(A)=0.8 q=P(A⁻)=1-p=1-0.8=0.2 - q - вероятность противоположного события P₁₀₀(20)=C²⁰₁₀₀*0.8²⁰*0.2¹⁹=4.606 P₁₀₀(60)=C⁶⁰₁₀₀*0.8⁶⁰*0.2⁵⁹≈3.195 (4.606+3.195)/2=3.9 Вероятность не менее 20 и не более 60 = 3.9 P₁₀₀(80)=C⁸⁰₁₀₀*0.8⁸⁰*0.2⁷⁹≈2.93 Вероятность 80 раз ≈2.93
б)(1+6a)+(a^9-5a)=1+6a+a^9-5a=a^9+a+1
в букве "б" точно а в 9 степени?