Объяснение:
Выносим общий множитель √2*sinx за скобки
√2*sinx*(2-cosx)+cosx-2=0
Выносим знак минус за скобку
√2*sinx*(2-cosx)-(2-cosx)=0
Выносим за скобку общий множитель 2-cosx
(2-cosx)*(√2*sinx-1)=0
2-cosx=0 или √2*sinx-1=0
1) -cosx=-2 - не существует, поскольку cosx принадлежит [-1:1]
2) √2*sinx=1 делим на √2
sinx= 1/√2
sinx= 1/√2
используем обратную тригонометрическую ф-цию
x=arcsin(1/√2)
sinx периодическая ф-ция добавляем 2Пn, n принадлежит Z
x=arcsin(1/√2)+2Пn, n принадлежит Z
Решаем уравнение
x=п/4+2Пn, n принадлежит Z
Вроде так
Вар 1
Пусть х см - основание р/б треугольника, тогда 2х(см) - каждая из двух боковых сторон. ПО условию задачи составляем уравнение:
х+2х+2х = 20
5х = 20
х= 4 (см) -основание
2*4 = 8 (см) - каждая из двух боковых сторон
Вар 2
Пусть х (см) - каждая из двух боковых сторон, тогда 2х (см) - основание р/б треугольника. Получаем, что х+х = 2х - сумма двух боковых сторон равна основанию. Это предположение противоречит неравенству треугольника ( каждая сторона должна быть меньше суммы двух других сторон). Этого не может быть.
ответ: 4 см - основание, 8 см - каждая из боковых сторон
Нужно было подставить в функцию иск и вычесть корень.