1) Если после переливания 12,5% содержимого первого бидона во второй их содержимое уравняется, то аналогичное будет после переливания 25% из первого бидона в третью емкость.
Следовательно, если содержимое первого бидона принять за Х, то содержимое второго бидона 0,75 * Х. Получаем уравнение
Х + 0,75 * Х = 1,75 * Х = 70 , откуда Х = 40.
Итак, в первом бидоне 40 л молока, а во втором - 30 л.
2) Если собственная скорость катера Х км/ч, то его скорость по течению
Х + 3, а против течения - Х - 3. Получаем уравнение
5 * (Х + 3) + 3 * (Х - 3) = 5 * Х + 15 + 3 * Х - 9 = 8 * Х + 6 = 126 , откуда Х = 15 , следовательно, собственная скорость катера 15 км/ч
Условие: Пусть длина окружности меньшего колеса это х м, Тогда длина окружности большего колеса это (х+1) м Количество оборотов меньшего колеса (y+20) Количество оборотов меньшего колеса y
Решение: Составляем систему уравнений: x(y+20)=175 и (x+1)y=175 xy+20x=175 и xy+y=175 Из первого уравнения вычитаем второе: 20х=y Подставляем полученное значение y во второе уравнение: x*20x+20x=175 20x^2+20x-175=0 x^2+x-8,75=0 D=b^2-4ac=1^2-4*1*(-8,75)=1+35=36 x=2,5 (м) - длина окружности меньшего колеса х+1=2,5+1=3,5 (м) - длина окружности большего колеса
1) Если после переливания 12,5% содержимого первого бидона во второй их содержимое уравняется, то аналогичное будет после переливания 25% из первого бидона в третью емкость.
Следовательно, если содержимое первого бидона принять за Х, то содержимое второго бидона 0,75 * Х. Получаем уравнение
Х + 0,75 * Х = 1,75 * Х = 70 , откуда Х = 40.
Итак, в первом бидоне 40 л молока, а во втором - 30 л.
2) Если собственная скорость катера Х км/ч, то его скорость по течению
Х + 3, а против течения - Х - 3. Получаем уравнение
5 * (Х + 3) + 3 * (Х - 3) = 5 * Х + 15 + 3 * Х - 9 = 8 * Х + 6 = 126 , откуда Х = 15 , следовательно, собственная скорость катера 15 км/ч