Решаем методом замены переменной.
Пусть x + y = a, xy = b
Выразим теперь сумму квадратов из второго уравнения через a и b:
(x + y)² = x² + 2xy + y² или с учётом замены
a² = x² + 2b + y²
Отсюда
x² + y² = a² - 2b
Перепишем теперь нашу систему с учётом все вышесказанного:
a = 6 a = 6 a = 6
a² - 2b = 16 + 2b -4b = 16 - a² = 16 - 36 = -20 b = 5
Теперь возвращаемся к нашим старым переменным, учитывая, что a = x + y, а b = xy:
x + y = 6 y = 6 - x
xy = 5 x(6 - x) = 5 (1)
(1) 6x - x² = 5
x² - 6x + 5 = 0
x1 = 5; x2 = 1
Получаем два варианта:
x = 5 или x = 1
y = 1 y = 5
Всё, систему мы решили
Раз просите идею решения - идею и расскажу.
Нужно построить график функции y==|x^2-8x+15|+2. Для этого, сначала строим параболу у=х^2-8x+15, затем все то, что ниже оси ОХ отражаем симметрично относительно ОХ вверх. Получаем параболу, часть которой загнута вверх, тем самым получив график модуля. Затем передвигаем весь этот график на 2 единицы вверх, тем самым добавив 2.
Затем нужно понять: у=ах - прямая, проходящая через точку (0,0). Изменяя коэффициент а мы можем крутить эту прямую в любом направлении, но она все равно будет проходить через точку (0,0). Крутим ее от оси ОХ (а=0) вверх, увеличивая а. Анализируем, при каком угле сколько точек пересечения с графиком у=|x^2-8x+15|+2. Те промежутки, когда их 2 - выписываем.
(так как
)
по основному тригонометрическому тождеству:
⇒ ответ: