У=6х - прямая пропорциональность, графиком является прямая, коэффициент пропорциональности к=6>0, т.е. угол наклона прямой - острый, значит график расположен в 1 и 3 четверти. у=0,5х+4 - линейная зависимость, графиком является прямая, коэффициент пропорциональности к=0,5>0, т.е. угол наклона прямой - острый; эту прямую можно построить сдвигом прямой у=0,5х на 4 единицы вверх вдоль оси ординат, значит график расположен в 1,2 и 3 четвертях. у=3х-1 - линейная зависимость, графиком является прямая, коэффициент пропорциональности к=3>0, т.е. угол наклона прямой - острый; эту прямую можно построить сдвигом прямой у=3х на 1 единицу вниз вдоль оси ординат, значит график расположен в 1,4 и 3 четвертях. у=-3 - прямая, параллельная оси абсцисс с постоянной ординатой -3, значит график расположен в 3 и 4 четвертях.
См. рисунок в приложении. Строим границы указанных областей. у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3) Парабола разбивает плоскость хОу на две части внутреннюю и внешнюю. Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство 0≥-1 - верно. Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости. Область определяемая неравенством х+у≥2 расположена ниже прямой. Координаты точки (0;0) удовлетворяют неравенству х+у≤2: 0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1 О т в е т. р=-1
D=(-5 *-5)- 4*3*2=25-24=1
x1=(5+1):2*3=1
x2=(5-1):2*3=2/3