На одной координатной плоскости постройте графики функций у=2х² и у=-2х². используя графики, выяснить, какая из этих функций возрастает на промежутке х⩾0
1) На 3 полках было x, y, z книг { x + y + z = 95 { x = 2y Только такая система не решается, или ошибка в условии. Может, там было две полки? Или условие про 3-ью полку пропущено?
2) В 3 цехах x, y, z рабочих { x + y + z = 245 { y = 3x { z = x - 15
3) Всего в книге x страниц. В 1 день он прочитал 0,25x, во 2 день 0,3x, а в 3 день 135 страниц. Тут система не получается, одно уравнение. 0,25x + 0,3x + 135 = x
4) Это задача такая же, как 3) 0,4x + 0,25x + 140 = x
5) Длина участка а, ширина b. { a = b + 3 { S = a*b = 40 P = 2*(a + b) = ?
6) Как и в 5), длина а, ширина b { a = b + 3 { P = 2(a + b) = 46
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
На счет второго вопроса, возрастает у=2х², а на у=-2х² убывает