Пусть мы имеем неравенство с двумя переменными одного из следующих видов:y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:1. Строим график функции y = f(x), который разбивает плоскость на две области.2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией. ну вообще это основное, а там уже смотри по заданию как))
Б - заменить на значек бесконечности (восьмерка горизонтально).
А) D(f)=(-Б;+Б). Прямая. В точке (0;0) пересекает ось абсцисс (х) и ось ординат (у). Возрастает т.к. k > 0. Не имеет ограничений. Не четная. Область значений - E(f)=(-Б;+Б).
Б) D(f)=(-Б;+Б). Прямая. В точке (0;3) пересекает ось х. В точке (-1.5;0) пересек. ось у. Возрастает т.к. k > 0. Не имеет ограничений. Не четная. Область значений - E(f)=(-Б;+Б).
В) D(f)=(-Б;+Б). Прямая. В точке (0;1) пересекает ось х. В точке (-0.2;0) пересек. ось у. Убывает т.к. k < 0. Не имеет ограничений. Не четная. Область значений - E(f)=(-Б;+Б).
Г) D(f)=(-Б;+Б). Прямая. В точке (0;-2) пересек. ось у. Убывает т.к. k < 0. Ни четная и ни не четная. Область значений - E(f)=-2
3у+2у=3-4
5у=-1
у=-1÷5
у= --0,2