Первые члены арифметической и возрастающих прогрессий одинаковы, и каждый из них равен 3. вторые члены прогрессий тоже равны между собой. третий член прогрессии относится к третьему члену арифметической прогрессии, как 9: 5. найдите эти прогрессии
Переписывая уравнение в виде y=-(x-2)²+3=-x²+4x-1, замечаем, что график представляет собой квадратическую параболу. Так как коэффициент при x² равен -1<0, то ветви параболы направлены вниз. Первый член -(x-2)² обращается в 0 лишь при x=2, а пи других значениях х он отрицателен. Поэтому точка x=2 является вершиной параболы, в которой функция достигает своего наибольшего значения Ymax=y(2)=-2²+4*2-1=3. То есть координаты вершины есть (2;3). Чтобы найти координаты точек пересечения параболы с осью ОХ, надо решить уравнение x²-4x+1=0. Находим дискриминант D=(-4)²-4*1*1=12=(2√3)². Тогда x1=(4+2√3)/2=2+√3, x2=(4-2√3)/2=2-√3. Значит, (2+√3;0) и (2-√3;0) - координаты точек пересечения параболы с осью ОХ. Отсюда ясно, что если с>3, то прямая y=c не пересекает параболу, при c=3 прямая y=3 имеет с параболой одну общую точку - вершину параболы. А при c<3 прямая пересекает параболу в 2 точках. ответ: при c<3.
a₁=b₁=3
a₁+d=b₁q=a₁q d=a₁q-a₁
a₁q²/(a+2d)=9/5
5a₁q²=9*(a₁+2d)
5a₁q²=9a₁+18d
5a₁q²=9a₁+18*(a₁q-a₁)
5a₁q²=9a₁+18a₁q-18a₁
5a₁q²=18a₁q-9a₁ |÷a₁
5q²=18q-9
5q²-18q+9=0 D=144 √D=12
q₁=3 ⇒ d=3*3-3=9-3=6
q₂=0,6 ⇒ d=3*0,6-3=-1,2 ⇒
1) Геометрическая прогрессия (b₁=3, q=3): 3; 9; 27; 81; ...
Арифметическая прогрессия (a₁=3, d=6): 3; 9; 15; 21; ...
2) Геометрическая прогрессия (b₁=3, q=0,6): 3; 1,8; 1,08; ...
Арифметическая прогрессия (a₁=3, d=-1,2): 3; 1,8; 0,6; ...