А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
Объяснение:
решаю задачу с другим условием по согласованию с автором вопроса
Яке значення може приймати градусна міра кута а?
cos (x+a ) = - sin x
по формулам приведения мы знаем что косинус меняется на синус (и наоборот) если добавить угол равный 90 + 180*n
а если добавить угол равный 180*n может поменяться знак но функция не изменится
итак
косинус превратился в синус значит угол а это 90 или 270
далее
при малом х синус положительный
по условию cos (x+a ) = - sin(x) - отрицательный
отрицательный косинус в 2 и 3 четверти
(x+a) должен лежать в 2 или 3 четверти
при малом х нам подходит либо 90 либо 180
смотрим ранее (90 или 270) и то что получили только что (90 или 180) и понимаем что ответ 90 - это ответ