М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Лази21
Лази21
01.07.2021 19:21 •  Алгебра

Вычислите с формулы а^2-b^2=(a-b)(a+b): 5) (5/6)^2-(2/3)^2 6) (7/9)^2-(1/6)^2 7) (5/12)^2-(2/4)^2

👇
Открыть все ответы
Ответ:
roapoaop
roapoaop
01.07.2021

Пусть х - любое натуральное число, тогда следующее натуральное число будет на 1 больше и так далее. Запишем пять последовательных натуральных чисел, первое из которых х: х, х + 1, х + 2, х + 3, х + 4.

Найдем сумму этих пяти чисел:

х + (х + 1) + (х + 2) + (х + 3) + (х + 4) = 5 * х + 10 = 5 * (х + 2).

Как известно произведение делятся на число 5, если хотябы один из множителей делится на число 5. Так как 5 : 5 = 1, значит последовательность пяти натуральных чисел делится нацело на 5, что и требовалось доказать.

Объяснение:)

4,4(86 оценок)
Ответ:
nsmotrova
nsmotrova
01.07.2021

ответ:

разделим на 2 каждый член уравнения

\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}

2

3

sinx+

2

1

cosx=

2

2

\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}

2

3

=cos

6

π

2

1

=sin

6

π

sin(x+

6

π

)=

2

2

x+

6

π

=

4

π

+2πn

x=−

6

π

+

4

π

+2πn

x=

12

π

+2πn

x+

6

π

=π−

4

π

+2πn

x+

6

π

=

4

+2πn

x=−

6

π

+

4

+2πn

x=

12

+2πn

4,4(62 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ