Основное правило: все неравенства, в которых присутствует множитель решаются только методом интервалов. Также только методом интервалов решаются дробные неравенства, если неизвестный множитель стоит в знаменателе.
1) Определим ОДЗ (область допустимых значений):
( — любое число).
2) Приравняем неравенство к нулю и находим корни уравнения:
Если дискриминант меньше нуля, то парабола, которая исходит из данного уравнения не имеет общих точек с осью и, благодаря тому, что положительный, то парабола будет находиться в положительных координатах оси ординат (ось ). В таком случае, при любом значении икса неравенство будет иметь смысл (потому что в нашем неравенстве стоит знак , что правильно со значением уравнения. Если бы в таком неравенстве стоял бы знак или , то такое неравенство не имело бы смысла, так как сама парабола находиться в положительных значениях оси ординат).
ответ: ( — любое число).
Область определения (обозначается D(y)) функции находится следующим образом. Необходимо проанализировать функцию на наличие корней, знаменателей и логарифмов. Последний случай нас мало интересует, потому сразу перейдем к двум первым.
А именно: в знаменателе не должен быть ноль, а число под корнем не должно быть отрицательным.
На самом деле, первую строчку можно опустить, далее поймете почему).
Решая вторую строчку получаем:
Из этого следует, что x1≠-4, x2=-4, x3=1 (2 и 3 корни получились путем решения квадратного уравнения в числителе).
Далее методом интервалов находим промежутки, удовлетворяющие условию ≥0. Таким промежутком является [1;∞).
ответ: D(y)=[1;∞)
Уравнение касательной в общем виде :
y = f(x₀) + f'(x₀)(x - x₀)
f(x) = (2x - 1)³
f(x₀) = f(1) = (2 * 1 - 1)³ = 1
f'(x) = [(2x - 1)³]' = 3(2x - 1)² * (2x - 1)' = 3(2x - 1)² * 2 = 6(2x - 1)²
f'(x₀) = f'(1) = 6 * (2 * 1 - 1)² = 6 * 1 = 6
Уравнение искомой касательной :
y = 1 + 6 *(x - 1) = 1 + 6x - 6 = 6x - 5
ответ : y = 6x - 5