2.(√(x-4) - a^2 + 9)(x^2 - 3x - 70) = 0 Произведение равно 0, когда любой из множителей равен 0. Начнем со второй скобки x^2 - 3x - 70 = 0 D = 9 - 4(-70) = 9 + 280 = 289 = 17^2 x1 = (3 - 17)/2 = (-14)/2 = -7; x2 = (3 + 17)/2 = 20/2 = 10 При любом а в первой скобке будет два корня во второй скобке. ответ: ни при каком а не будет 1 корня, всегда 2, 3 или 4.
3. Квадратное уравнение имеет более 2 корней, если это тождество. Это значит, что все три коэффициента: при x^2, при x и число, равны 0. { 2a^2 - 3a - 2 = 0 { a^3 - 4a = 0 { 3a^2 + a - 14 = 0 Решаем эти уравнения { (a - 2)(2a + 1) = 0 { a(a^2 - 4) = a(a - 2)(a + 2) = 0 { (a - 2)(3a + 7) = 0 При а = 2 все три коэффициента обращаются в 0. Получается 0x^2 + 0x + 0 = 0 Это тождество верно при любом х. ответ: а = 2
4. Я не понял задания. В 1 скобке что в знаменателе? y или y-1 ? Во 2 скобке что в числителе? 2y-7 или 7? И что в знаменателе? Справа тоже непонятно, что в знаменателе. Расставь скобки по-нормальному!
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.