5x+3(x+8)<10(x-1)
5x+3x+24<10x-10
8x-10x<-10-24
-2x<-34
-x<-17
x>17
x∈(17;+∞), x≠17
17
° +∞
{x-y=4, => x=y+4
{xy+y²=6 => (y+4)y+y²=6
y²+4y+y²=6
2y²+4y=6 |2
y²+2y=3
y²+2y-3=0
y₁+y₂=-2
y₁*y₂=-3
y₁=-3
y₂=1
x₁=-3+4=1
x₂=1+4=5
ответ: (1;-3), (5;1)
Сравнить: 0,4·10^{-3} и 4,1· 10^{-4}
4·10^{-3}=0.4/10^3=4/10/10^3=4/10^4
4,1· 10^{-4}=4.1/10^4
4 < 4.1 => 0,4·10^{-3} < 4,1· 10^{-4}
Объяснение:
Вертикальная ассимптота функции х=0.
Чтобы найти экстремумы найдём первую производную и приравняем её нулю.
у'=1-1/х²=0 => 1=1/х² => х²=1
х1=1; х2 =-1
Рассмотрим интервалы (-бесконечность ;-1); (-1; 0); (0; 1); (1; +бесконечность)
При х=-2 у'(-2)=1-1/4=3/4>0, значит функция в этом интервале возрастает.
у'(-1/2)=1-4=-3<0 - функция убывает.
у'(1/2)=1-4=-3<0 - функция убывает.
у'(2)=1-1/4=3/4>0 - функция возрастает.
Таким образом, точка (-1; -2) - локальный максимум функции, а точка (1; 2) - локальный минимум.
ответ: так как х^2*у=8/5, то х^4*у^2=(8/5)^2=64/25 и искомое значение равно 5*64/25=64/5=12,8.
Объяснение: