М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Keeping
Keeping
20.07.2020 04:11 •  Алгебра

11 пример: 3.2 - (-6.3) -четыре целых пять шестых минус одна целая одна четвёртая 2 пример: 2.6 - (-1.4) две целых пять шестых минус три целых три восемых ( это дроби) 2 1)уравнение: 2.4 + х = - 2.8 2)уравнение: 18.24 - y = 20 3) уравнеие: z + ( -
четыре целых две двадцать седьмых) = шесть целых пять девятых я пишу буквами потому что тут таких дробей нет уравнение и найти расстояние между точками а (-5.2) б (-1.8) с (- две третьих) д (пять девятых) 3 уравнение и найти
расстояние между точками а (-5.2) б (-1.8) с (- две третьих) д (пять девятых) решите надо!

👇
Ответ:
beatsdol
beatsdol
20.07.2020

1 задание.

1)три целых пять двенадцатых(просто решаешь пример, все приводишь к общему знаменателю,и решаешь, сосчитать на калькуляторе)

2)три целых одиннадцать двадцать четвертых(все тоже самое)

2 задание.

1)x=-5,2(x=-2.8-2.4)

2)y=-1,76(y=18.24-20)

3)z=десять целых семнадцать двадцать седьмых(z=шесть целых пять девятых+ четыре целых две двадцать седьмых)(общий знаменатель 27 и считаешь.)

3 задание.

расстояние между точками ищеться их разностью.

расстояние между А и Б будет равно -5,2-(-1,8)=-5,2+1,8=-3,4(расстояние не может быть отрицательных, так что просто 3,4)

Расстояние между точками С и Д будет равно  -две третьих-пять девятых(общий знаменатель 9)=-шесть девятых-пять девятых=-одиннадцать девятых(расстояние не может быть отрицательных, так что просто одиннадцать девятых=одна целая две девятых)

тут больше писать нечего, это самое расширеное решение

4,4(61 оценок)
Открыть все ответы
Ответ:
бобр04
бобр04
20.07.2020

1) вектор AD (-6 - (-3); -3 - 5; 0 - (-6) ) = (-3; -8; 6)

координаты вектора находятся как разность координат конца и начала вектора


2) Расстояние между  точками B и D это длина вектора  BD

Вектор BD( -6 - 5; -3 - (-2); 0 - 4) = (-11; -1; -4)

Длина вектора это квадратный корень из суммы квадратов координат вектора т.е.  = 


3) Координаты середины отрезка это полусумма координат концов отрезка. Т.е.

точка М ( (-3+5)/2; (5 + (-2))/2 ; (-6+4)/2 ) = (1; 1,5; -1)


4) Произведение векторов AB и CD это сумма произведений их координат.

Сначала найдем вектора.

AB (5-(-3); -2-5; 4-(-6)) = (8;-7; 10)

CD (-6-0; -3-4; 0-3) = (-6; -7; -3)

Теперь перемножим координаты векторов и сложим их

AB * CD = 8*(-6) + (-7)*(-7) + 10*(-3) = -48+49-30 = -29


5) Угол между векторами можно найти из формулы векторного произведения векторов, которое равно произведению модулей векторов на косинус угла между ними.

Как уже было найдено в п4

AB (8;-7; 10) , CD (-6; -7; -3) и AB * CD = -29

Модуль |AB| равен  

Модуль |CD| равен 


Тогда  AB * CD / |AB| * |CD| =  что приблизительно равно -0,204948276



6) Аналогично пункту 5

Угол между векторами можно найти из формулы векторного произведения векторов, которое равно произведению модулей векторов на косинус угла между ними.

Как уже было найдено ранее 

вектор AD (-3; -8; 6)

Найдем вектор ВС

Вектор ВС (0-5; 4-(-2); 3-4) = (-5; 6; -1)

Теперь найдем AD * ВС = (-3)*(-5) + (-8)*6 + 6*(-1) = -39

Модуль |AD| равен  

Модуль |ВС| равен 


Тогда  AD * ВС / |AD| * |ВС| =  что приблизительно равно  -0,352767774


7) Вектор BD уже был найден BD(-11; -1; -4)

Вектор CB= - ВС =  (5; -6; 1)

Найдем вектор AC (0-(-3); 4-5; 3-(-6) ) = (3; -1; 9)

Найдем сумму векторов AC и BD 

AC(3; -1; 9) + BD(-11; -1; -4) = (3 + (-11); -1 + (-1); 9 + (-4) ) = (-8; -2; 5)

Теперь найдем произведение этого вектора на CB(5; -6; 1)

Произведение векторов равно (-8; -2; 5) * (5; -6; 1) = (-8)*5 + (-2)*(-6) + 5*1 = -23


8) Условие коллинеарности это пропроциональность координат векторов (если они не равны нулю)

В нашем случае  AB(8;-7; 10) и CD(-6; -7; -3) не имеют нулевых координат, значит можно проверить на пропорциональность.

Очевидно 


Следовательно вектора не коллинеарны.


Подробнее - на -

4,7(82 оценок)
Ответ:
Dipper17
Dipper17
20.07.2020

Объяснение:

Пусть дан квадратный трёхчлен x²+b*x+c. Если требуется выделить из этого выражения полный квадрат, то это означает, что это выражение нужно представить в виде (x+d)²+e, где d и e - неизвестные пока числа. Задача сводится к их нахождению. Раскрывая скобки, получаем выражение x²+2*d*x+d²+e, которое должно быть тождественно выражению x²+b*x+c. То есть должно выполняться тождество x²+2*d*x+d²+e≡x²+b*x+с. Это тождество будет иметь место в том случае, если будут выполнены равенства 2*d=b и d²+e=c. Поэтому для выделения полного квадрата нужно решить систему уравнений:

2*d=b

d²+e=c

Из первого уравнения находим d. Подставляя его затем во второе уравнение, находим e.

Примеры:

1) дан квадратный трёхчлен x²+4*x+8. В этом случае b=4 и c=8, поэтому система уравнений будет такова:

2*d=4

d²+e=8

Решая её, находим d=2 и e=4. Поэтому x²+4*x+8=(x+2)²+4.

2) дан квадратный трёхчлен x²-4*x+6. В этом случае b=-4 и c=6, поэтому система уравнений будет такова:

2*d=-4

d²+e=6

Решая её, находим d=-2 и e=2. Поэтому x²-4*x+6=(x-2)²+2.

Пусть теперь дан квадратный трёхчлен общего вида: a*x²+b*x+c, где a≠1. Так как a≠0, то разделив этот трёхчлен на a, получим выражение вида a*(x²+x*b/a+c/a). если теперь обозначить b/a=b1, c/a=c1, то это выражение запишется в виде a*(x²+b1*x+c1). Выделяя полный квадрат из трёхчлена x²+b1*x+c1, получим: a*x²+b*x+c=a*[(x+d)²+e], где d и e находятся из системы уравнений:

2*d=b1

d²+e=c1.

Примеры:

1. дан квадратный трёхчлен 3*x²+4*x+8. В этом случае a=3, b=4 и c=8. Разделив его на 3, получим выражение 3*(x²+4*x/3+8/3). Поэтому в данном случае b1=4/3, c1=8/3 и система уравнений для определения d и e будет такова:

2*d=4/3

d²+e=8/3

Решая её, находим d=2/3 и e=20/9. Поэтому 3*x²+4*x+8=3*[(x+2/3)²+20/9].

2. дан квадратный трёхчлен 3*x²-4*x+6. В этом случае a=3, b=-4 и c=6. Разделив его на 3, получим выражение 3*(x²-4*x/3+2). Поэтому в данном случае b1=-4/3, c1=2 и система уравнений для определения d и e будет такова:

2*d=-4/3

d²+e=2

Решая её, находим d=-2/3 и e=14/9. Поэтому 3*x²-4*x+6=3*[(x-2/3)²+14/9].

4,5(22 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ