a) -3m· 4m · 2n · 3 = -72m²n
b) (6a · 2b · 3c) · 2 = 72abc
Решение по правилу Крамера.
x1 x2 x3 B
-3 5 -6 -5 Определитель
2 -3 5 8 20
1 4 -1 1
Заменяем 1-й столбец на вектор результатов B:
-5 5 -6
8 -3 5 Определитель
1 4 -1 -60
Заменяем 2-й столбец на вектор результатов B:
-3 -5 -6
2 8 5 Определитель
1 1 -1 40
Заменяем 3-й столбец на вектор результатов B:
-3 5 -5
2 -3 8 Определитель
1 4 1 80
x1 = -60 / 20 = -3,
x2= 40 / 20 = 2,
x3= 80 / 20 = 4.
Определители находятся по схеме Саррюса (параллельные полоски).
Вот первый:
-3 5 -6| -3 5
2 -3 5| 2 -3
1 4 -1| 1 4 = 9+25-48+10+60-18 = 20.
Аналогично третий и четвёртый:
24 -25 -12
-10 15 48 = 40
9 40 -40
-10 96 -15 = 80
1 шаг - переворачиваете дроби, т.е. числитель делаете знаменателем, а знаменатель числителем. или выражаюсь культурным языком, находите обратную дробь к данной, при этом меняете показатель на положительный
2 шаг. возводите степень в степень, при этом перемножаете показатели.
3 шаг. произведение дробей прибираете к рукам, т.е. подгоняете под одну дробную черту произведение знаменателей, а числители перемножаете и записываете в числителе, иными словами, записываете по правилу произведение дробей.
4 шаг. Выделяете отдельно одинаковые буквы, отдельно числа, т.е. обосабливаете их для того, чтобы легче сократить.
5 шаг. Сокращаете дроби.
6 шаг. Любуетесь своей работой.
НО я бы решал легче, сделал бы все показатели положительными, а потом сократил. и уже на третьем шаге отдыхал. Удачи.
б) 2(6a2b3c) = 2(36abc) = 72abc