М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AlCapone025
AlCapone025
01.05.2022 02:57 •  Алгебра

Решите уравнение (x+1)(x-2)=x^2+4+x

👇
Ответ:
оаосов
оаосов
01.05.2022

(x+1)(x-2)=x²+x+4

x²-2x+x-2=x²+x+4

x²-x-2=x²+x+4

x²-x-2-x²-x-4=0

-2x-6=0

-2x=6

x=-3

ответ: x= -3

4,7(38 оценок)
Ответ:
X^2-2x+x-2=x^2+4+x
-2x-2-4=0
-2x-6=0 |:(-2)
x+3=0
x=-3
4,4(41 оценок)
Открыть все ответы
Ответ:

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

4,5(69 оценок)
Ответ:
Бронвин
Бронвин
01.05.2022
Обозначим длину l cм, ширину b см.
P = 2(l + b) = 40
2l + 2b = 40
2l = 40 - 2b = 2(20 - b)
l = 20 - b
S1 = l*b = (20 - b)*b = 20b - b^2

Изменим размеры по условию, получаем
длина = (l-3) см = 20 - b - 3 = 17 - b
ширина = (b + 6) см
Площадь нового прямоугольника
S2 = (l-3)* (b + 6) = (20 - b - 3)*(b + 6) = (17 - b)*(b + 6) = 17b - b^2  + 102 - 6b = 11b - b^2 + 102  
S2 = S1 + 3
  20b - b^2 + 3 = 11b - b^2 + 102
20b - b^2 - 11b + b^2 = 102- 3
9b = 99
b = 11 см
l = 20 - b = 20 - 11 = 9 см
S1 =  l*b = 11*9 = 99 см^2

Проверка:  l = 9-3=6 см
                   b = 11+6 = 17 см
                   S2 = 6*17=102 см^2
                   S2 - S1 = 102 - 99 = 3 см^2

ответ: площадь первоначального прямоугольника 99 см^2.

 

 
4,8(40 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ