М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
частник
частник
30.03.2022 10:39 •  Алгебра

Одному рабочему на выполнение производственного надо на 2 ч больше, чем другому. первый рабочий проработал 2 ч, а затем его сменил второй. после того, как второй рабочий проработал 3 ч, оказалось, что выполнено 3\4 . за сколько часов может выполнить это каждый рабочий самостоятельно?

👇
Ответ:
grachev791
grachev791
30.03.2022

=======================================


Одному рабочему на выполнение производственного надо на 2 ч больше, чем другому. первый рабочий прор
4,8(51 оценок)
Открыть все ответы
Ответ:
Kira2236
Kira2236
30.03.2022
1)-2x+1=-x-6
-2x+x=-6-1
-x=-7
x=7

2)3/8x=24;
x=24:3/8
x=24×8/3
x=64

2(0,6x+1,85)=1,3x+0,7
1,2x+3,7=1,3x+0,7
1,2x-1,3x=0,7-3,7
-0,1x=-3
x=30

Найдите значение числового выражения:
(2/7+3/14)(7,5-13,5)=

1) 2/7×7,5-2/7×13,5+3/14×7,5-3/14×13,5=

2) 7,5=7 5/10=7 1/2=(1+7×2)/2=15/2

3)2/7×15/2=15/2

4)13,5=13 1/2=(1+13×2)/2=27/2

5)2/7×27/2=27/7

6)3/14×7,5=3/14×15/2=45/28

7)3/14×27/2=81/28
8)15/2-27/7+45/28-81/28=
105/14-54/14-36/28=51/14-36/28=102/28-36/28=66/28=33/14=2 5/14

Упростите выражение:
1)5a-3b-8a+12b
-3a+9b

2)16c+(3c-2)-(5c+7)
16c+3c-2-5c-7=14c-9

3)7-3(6y-4)
7-18y+12=-18y+19
4,8(91 оценок)
Ответ:
ilyadmitriev0
ilyadmitriev0
30.03.2022

\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Объяснение:

Рассмотрим сначала первое неравенство системы.

Начнем с ОДЗ:

log_3^2x+10,\;=\;x0\\log_3x+30,\;x\dfrac{1}{27}\\x0\\x+5\ne0,\;=\;x\ne-5\\=x\in\left(\dfrac{1}{27};+\infty\right)

Продолжим решение:

\dfrac{lg(log_3^2x+1)-lg(log_3x+3)}{x+5}\ge0\\\dfrac{lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)}{x+5}\ge0

1)

lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)=0,\;=\;\dfrac{log_3^2x+1}{log_3x+3}=1\\\\=log_3^2x+1=log_3x+3,\;=\;log_3^2x-log_3x-2=0

Замена: t=log_3x.

t^2-t-2=0\\t^2+t-2t-2=0\\t(t+1)-2(t+1)=0\\(t+1)(t-2)=0\\t=-1\\t=2

Обратная замена:

log_3x=-1\\x=\dfrac{1}{3}\\\\log_3x=2\\x=9

С учетом ОДЗ оба корня подходят.

2)

x+5\ne0\\x\ne-5

С учетом ОДЗ получим, что решение неравенства:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)

Теперь перейдем ко второму неравенству системы:

Понятно, что сначала нужно написать ОДЗ.

0.5x0,\;=\;x0\\(0.5x)^{6^x}0,\;=\;x0\\=x0

Продолжим решение:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Заметим, что данное неравенство хорошо раскладывается на множители:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Решим неравенство по методу интервалов.

1)

\sqrt[4]{6}-6^x=0\\6^x=6^{\frac{1}{4}}\\x=\dfrac{1}{4}

2)

36-6^x-log_60.5x=0\\log_60.5x=-6^x+36

Введем функции f(x)=log_60.5x и g(x)=-6^x+36. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно, log_61=-36+36,\;=\;0=0, верно. Так, мы решили это уравнение, получив, что его корень x=2.

Тогда решение неравенства с учетом ОДЗ:

x\in\left(\dfrac{1}{4};\;2\right)

Итого имеем:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)\\x\in\left(\dfrac{1}{4};\;2\right)

Найдем пересечение:

x\in\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Задание выполнено!

4,7(43 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ