Существует два перевода из периодической дроби в обыкновенную: 1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать столько нулей, скока цифр между запятой и первым периодом: 0,11(6) 116-11 105 7 0,11(6)=== 900 900 60 235-2 233 0.2(35)= = 990 990 2) а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k. б)Найдем значение выражения X · 10k в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь. г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные. 0,11(6)=Х k=1 10^(k)=1 тогда x*10=10*0,116666...=1,166666... 10X-X=1,166666...-0,116666...=1,16-0,11=1,05 9X=1,05 105 7 X== 900 60 0.2(35): k=2 10^k=100 100X=0.2353535...*100=23,535353 100X-X=23,535353-0.2353535=23,3 99x=23,3 233 x= 900
Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.