Вниз по реке-это значит, что течение плыть катеру, т.е. полная скорость катера за в это путешествие составляло х+21 км/ч, где х-скорость течения реки. Получается обратно скорость катера была меньше, т.к. течение уже мешало плыть катеру, т.е. обратно скорость катера составляла: 21-х км/ч. Пусть у - это время всего путешествия катера - туда и обратно. Составим уравнение относительно скорости реки "х" и решим его: Путешествие катера из города А в город В: (х+21)m=72 (x-21)n=72 m+n=y Здесь: m-время пути катера из города А в город В, а n-время пути катера обратно, тогда: m=y-n
(х+21)(y-n)=72 (x-21)n=72
Время пути канистры: х*у=21
Получаем систему уравнений:
(х+21)(y-n)=72 (x-21)n=72 х*у=21
x*y-x*n+21*y-21*n=72 x*n-21*n=72 х*у=21
21-x*n+21*y-21*n=72 x*n-21*n=72 х*у=21
21-x*n+21*y-21*n=72 n(x-21)=72 х*у=21
21-21n+72-21n+21y=72 n(21/y - 21)=72
-42n+21y=-21 :21 n=72/(21/y - 21)
-2n+y=-1 n=72/(21/y - 21)
y=2n-1 n*(21/(2n-1) - 21)=72 n*(21-42n+21)=72(2n-1) -42n²+42n-144n+72=0 -42n²-102n+72=0 -21n²-51n+36=2601+12096=5625 √5625=75 n1=(51+75)/-42=-3 <0 - ответом быть не может (скорость не может быть отрицательной) n2=(51-75)/-42=24/42=12/21
Найдём шестой член геометрической прогрессии: а) 1/2, 2... Зная первый b₁=1/2 и второй b₂=2 члены геометрической прогрессии, найдём ее знаменатель: q=2:1/2=4 b₆=1/2*4⁵=1024/2=512 ответ: b₆=512
б) 1/2; -2... Зная первый b₁=1/2 и второй b₂=-2 члены геометрической прогрессии, найдём ее знаменатель: q=-2:1/2=-4 b₆=1/2*(-4)⁵=-1024/2=-512 ответ: b₆=-512
в) 8;12;... Зная первый b₁=8 и второй b₂=12 члены геометрической прогрессии, найдём ее знаменатель: q=12/8=1,5 b₆=8*1,5⁵=60,75 ответ: b₆=60,75
г) 8; -12;... Зная первый b₁=8 и второй b₂=-12 члены геометрической прогрессии, найдём ее знаменатель: q=-12/8=-1,5 b₆=8*(-1,5)⁵=-60,75 ответ: b₆=-60,75
Запишем формулу общего члена прогрессии: а) 2;3;... Зная первый b₁=2 и второй b₂=3 члены геометрической прогрессии, найдём ее знаменатель: q=3/2=1,5 bn=2*1,5ⁿ⁻¹ ответ: bn=2*1,5ⁿ⁻¹
б) √3 ;3;...; Зная первый b₁=√3 и второй b₂=3 члены геометрической прогрессии, найдём ее знаменатель: q=3/√3=3¹⁻¹⁽²=3¹⁽²=√3 bn=√3*(√3)ⁿ⁻¹ ответ: bn=√3*(√3)ⁿ⁻¹
в) 1;-1;...; Зная первый b₁=1 и второй b₂=-1 члены геометрической прогрессии, найдём ее знаменатель: q=-1/√1=-1 bn=1*(-1)ⁿ⁻¹ ответ: bn=(-1)ⁿ⁻¹
г) √2; -√8;...; Зная первый b₁=√2 и второй b₂=-√8 члены геометрической прогрессии, найдём ее знаменатель: q=-√8/√2=-√4*2/√2=-2*√2/√2=-2 bn=√2*(-2)ⁿ⁻¹ ответ: bn=√2*(-2)ⁿ⁻¹
Путешествие катера из города А в город В:
(х+21)m=72
(x-21)n=72
m+n=y Здесь: m-время пути катера из города А в город В, а n-время пути катера обратно, тогда:
m=y-n
(х+21)(y-n)=72
(x-21)n=72
Время пути канистры:
х*у=21
Получаем систему уравнений:
(х+21)(y-n)=72
(x-21)n=72
х*у=21
x*y-x*n+21*y-21*n=72
x*n-21*n=72
х*у=21
21-x*n+21*y-21*n=72
x*n-21*n=72
х*у=21
21-x*n+21*y-21*n=72
n(x-21)=72
х*у=21
21-21n+72-21n+21y=72
n(21/y - 21)=72
-42n+21y=-21 :21
n=72/(21/y - 21)
-2n+y=-1
n=72/(21/y - 21)
y=2n-1
n*(21/(2n-1) - 21)=72
n*(21-42n+21)=72(2n-1)
-42n²+42n-144n+72=0
-42n²-102n+72=0
-21n²-51n+36=2601+12096=5625
√5625=75
n1=(51+75)/-42=-3 <0 - ответом быть не может (скорость не может быть отрицательной)
n2=(51-75)/-42=24/42=12/21
y=2n-1=2*12/21 - 1=24/21 - 1=8/7 - 1=1 1/7 - 1=1/7 км/ч