М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Deniza23
Deniza23
17.05.2022 05:41 •  Алгебра

(х-2)^3+20(2х-1)^3+х(х-5) решите 30

👇
Ответ:
дима2721
дима2721
17.05.2022

(x-2)^{3} +20(2x-1)^{3} +x(x-5)=x^{3} -3*2x^{2} +3x*2^{2} -2^{3} +20((2x)^{3} -3*(2x)^{2} *1+3*2x*1-1)+x^{2} -5x=x^{3} -6x^{2} +12x -8 +20(8x^{3} -12x^{2} +6x-1)+x^{2} -5x=x^{3} -6x^{2} +12x -8 +160x^{3} -240x^{2} +120x-20+x^{2} -5x=161x^{3} -245x^{2} +127x -28

4,4(22 оценок)
Открыть все ответы
Ответ:
bili0909
bili0909
17.05.2022

Неполные квадратные уравнения

Неполные квадратные уравнения – это квадратные уравнения, у которых коэффициент в или коэффициент с равен нулю. Возможно три варианта неполных уравнений:

Коэффициент b=0

Коэффициент с=0

Коэффициенты b=0 и с=0

Рассмотрим каждый из вариантов и решим несколько примеров.

Виды неполных квадратных уравнений

Каждый подвид уравнения решается быстро и Главное владеть навыком преобразования выражения, а именно переносом чисел из одной части тождества в другую и выносом общего множителя за скобку.

Первый случай

Если коэффициент b=0. Тогда формула неполного квадратного уравнения принимает вид:

ax2+с=0ax2+с=0

ax^2+с=0

В таком случае, решение принимает следующий вид:

ax2+с=0ax2+с=0

ax^2+с=0

ax2=−сax2=−с

ax^2=-с

x2=−сax2=−сa

x^2=-с\over{a}

x1=−сa−−−√x1=−сa

x_1=\sqrt{-с\over{a}}

x2=−−са−−−√x2=−−са

x_2= -\sqrt{-с\over а}- обратите внимание, что под корнем может оказаться как положительное, так и отрицательное число. Знак минуса в данном случае указывает на противоположность. В случае, если под корнем в результате получится отрицательное число, то действительных корней уравнение не имеет.

Решим пример:

7x2−28=07x2−28=0

– перенесем 28 в правую часть выражения.

7x2=287x2=28

– разделим обе части выражения на 7.

x2=4x2=4

x1=2x1=2

x2=−2x2=−2

Вот и все решение.

Второй случай

Во втором случае нулю равен будет коэффициент с. Тогда уравнение примет вид:

аx2+bx=0аx2+bx=0

аx^2+bx=0

В этом случае, решение будет выглядеть немного иначе:

ax2+bx=0ax2+bx=0

ax^2+bx=0

x(ax+b)=0x(ax+b)=0

x(ax+b)=0

x1=0x1=0

x_1=0

ax2+b=0ax2+b=0

ax_2+b=0

ax2=−bax2=−b

ax_2=-b

x2=−ba

Решим небольшой пример.

3x2−12x=03x2−12x=0

x(3x−12)=0x(3x−12)=0

x1=0x1=0

3x2−12=03x2−12=0

3x2=123x2=12

x2=123x2=123

x2=4

Этот иногда используется и при решении полных квадратных уравнений. Если уравнение можно свернуть по любой из формул сокращенного умножения, то потом каждую из скобок-множителей можно приравнять к нулю и решить уравнение гораздо быстрее, чем через дискриминант.

Третий случай

Третий случай самый когда b и с равны нулю. В этом случае, оба корня всегда равны 0.

ax2=0ax2=0

ax^2=0

x1=0x1=0

x_1=0

x2=0x2=0

x_2=0

Обратите внимание на то, что в любом случае, для корней квадратного уравнения необходима проверка. Каждый из получившихся корней нужно подставить в исходное уравнение и подсчитать результат.

Для неполных уравнений это особенно важно, потому что все считают их легкими и не акцентируют внимание на подсчетах. Это может привести к разного рода ошибкам. Чаще всего, ученики путают знаки. Вместо + получается – и наоборот. Помните, что знаки это очень важно и за ними нужно следить при переносе и делении чисел. Проверить себя можно и подставив значения в приведенные в статье формулы.

Иногда коэффициент а может быть отрицательным. В этом случае, вам придется делить на отрицательное число. А значит – все знаки выражения поменяются на противоположные. Будьте внимательны в этих скользких моментах.

4,6(50 оценок)
Ответ:
uchenik0012
uchenik0012
17.05.2022
Функцию (х+3)(х+1) проще исследовать после преобразования:
(х+3)(х+1) = х²+3х+х+3 = х²+4х+3 - это уравнение параболы.
Результаты исследования графика функции

Область определения функции. ОДЗ: -00<x<+00

Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2+4*x+3. 

Результат: y=3. Точка: (0, 3)
Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2+4*x+3 = 0 Решаем это уравнение  и его корни будут точками пересечения с X:
x=-3.0. Точка: (-3.0, 0)  x=-1.0. Точка: (-1.0, 0)
Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=2*x + 4=0 (Производную находим , a уравнение решаем )
Решаем это уравнение и его корни будут экстремумами:x=-2.0. Точка: (-2.0, -1.0)
Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:-2.0 Максимумов у функции нету 
Возрастает на промежутках: [-2.0, oo) Убывает на промежутках: (-oo, -2.0]
Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, 
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=2=0 - нет перегибов.
Вертикальные асимптоты Нету Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^2+4*x+3, x->+oo = oo, значит горизонтальной асимптоты справа не существует lim x^2+4*x+3, x->-oo = oo, значит горизонтальной асимптоты слева не существует Наклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^2+4*x+3/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^2+4*x+3/x, x->-oo = -oo, значит наклонной асимптоты слева не существует
 Четность и нечетность функции:Проверим функцию четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^2+4*x+3 = x^2 - 4*x + 3 - Нет x^2+4*x+3 = -(x^2 - 4*x + 3) - Нет - значит, функция не является ни четной ни нечетной
4,8(63 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ