5х^2-11х-5-7х^2 -2х^2-11х-5<0 |*(-1) 2х^2+11х+5>0 Решаем как квадратное уравнение: D=121-40=81 X=-11+-9/4 x1=-5 x2=-1/2 Раскладываем на множители (х+5)*(х+1/2)>0 Решаем через метод интервалов: Чертим координатную прямую и выставляем на неё нули уравнения, то есть -5,-1/2: (-5)(-1/2)> Точки выколотые, так как знак > строгий и эти точки в ответы не будут Начинаем определять знаки каждого интервала, начиная с крайнего правого, а именно: х>-1/2 Берём число больше -1/2, например ноль И подставляем значение в (х+5)(х+1/2)>0 Вычислять значение необязательно, главное понять какой в итоге знак будет В первой скобке получается положительный и во второй тоже положительный ++=+, значит интервал положительный По аналогии делаем с интервалами: -5<х<-1/2---> получается отрицательным х<-5---> получается положительным Теперь координатная прямая выглядит вот так: (-5)(-1/2)> + - + Нас интересуют значения больше нуля, так как знак > Значит в ответе будут только да положительных интервала (-~;-5);(-1/2;+~) Простите за дурацкую координатную прямую ~ это бесконечность, пишется как перевёрнутая восьмёрка, на телефоне просто нет Надеюсь, всё понятно:)
1/а.
Объяснение:
Преобразовать (упростить):
[(2a+3)/(2a-3)]*[(2a²+3a)/(4a²+12a+9)]-[(3a+2)/(2a+3)]+[(4a-1)/(2a-3)]-[(a-1)/a];
1)В скобках. Преобразовать:
числитель первой дроби:(2a²+3a)=а(2а+3);
знаменатель первой дроби:(4a²+12a+9)=(2а+3)²;
Вычитание:
[а(2а+3)/(2а+3)²] - [(3a+2)/(2a+3)]=
сокращение на (2а+3) в первой дроби:
=[а/(2а+3)] - [(3a+2)/(2a+3)]=
общий знаменатель (2a+3):
=(а-3а-2)/(2а+3)=
=(-2а-2)/(2а+3);
2)Умножение:
[(2a+3)/(2a-3)] * [(-2а-2)/(2а+3)]=
=[(2a+3)*(-2a-2)] / [(2а-3)*(2а+3)]=
сокращение на (2а+3) в числителе и знаменателе:
=(-2a-2)/(2а-3);
3)Сложение:
[(-2a-2)/(2а-3)] + [(4a-1)/(2a-3)]=
общий знаменатель (2а-3):
=(-2а-2+4а-1)/(2а-3)=
=(2а-3)/(2а-3)=1;
4)Вычитание:
1-[(а-1)/а]=
общий знаменатель а:
=(a-a+1)/a=
=1/a.