Объяснение:
1.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч). ⇒
ответ: скорость течения реки 5 км/ч.
2.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч).
Пусть время, затраченное на путь против течения реки равно t₁, а
а время, затраченное на путь по течению реки равно t₂. ⇒
Суммируем эти уравнения:
По условию задачи на весь путь катер затратил t₁+t₂=2 (ч). ⇒
ответ: скорость течения реки 5 км/ч.
1. Пусть равное количество окуней равно х. ⇒
2. Первый рыболов поймал х+7,второй х+6, а третий х+8.
3. (x+7)+(x+6)+(x+8)=51
3x+21=51
3x=30 |:3
x=10 ⇒
ответ: первый рыболов поймал 17 окуней,
второй рыболов поймал 16 окуней,
третий рыболов поймал 18 окуней.
1 вариант
№1
а) (a-5)²=a²-10a+25 б) (6a+b)²=36a²+12ab+b²
в) (4a-1)(4a+1)=16a²-1 в) (a+2b)³=a³+6a²b+6ab²+8b³
№2
(a-6)²-(36+5a)=a²-12a+36-36-5a=a²-17a
№3
а) 3x²+9xy=3x(x+3y) б) 10x⁵-5x=5x(2x⁴-1)
№4
а) (a+3)-2(a+3)=(a+3)(1-2)=-1(a+3) б) ax-ay+5x-5y=a(x-y)+5(x-y)=(x-y)(a+5)
в) a²+4ab+4b²=(a+2b)²=(a+2b)(a+2b)
№5
а) (y²-2a)(2a+y²)=y⁴-4a²
б) (3x²+x)²=9x⁴+6x³+x²
№6
а) 4x²y²-9a⁴=(2xy+3a²)(2xy-3a²) б) 25a²-(a+3)²=(5a-a-3)(5a+a+3)=(4a-3)(6a+3)
в) 27m³+n³=(3m+n)(9m²-3mn+n²)
№7
а) 9y²-25=0
9y²=25
y²=25/9
y₁,₂=±5/3=±1 2/3
б) (x+2)(x-2)-(x-3)²=-1
x²-4-x²+6x-9=-1
6x=12
x=2
№8
а) 35²-25²=(35-25)(35+25)=10*60=600
б) 299*301=299(300+1)=89700+299=8999
2)a^4-6a^2+9
3)25-y^2
4)36b^2-1
5)24x^2-2xy-y^2