Многочлен стандартного вида - это многочлен, в котором все слагаемые имеют стандартный вид и в котором приведены подобные слагаемые (имеют одинаковую буквенную часть).
Степень многочлена - это степень наибольшего одночлена, в ходящего в многочлен.
(1) (2) Прежде всего построим графики заданных функций. (См рис1.FIGURE.png) Далее. Найдем точки пересечения графиков. Из картинки видно, что точки пересечения (Обозначим их А0 и А2) имеют координаты А0(-1; 0) и А2(2; 3). Убедиться в этом можно, подставив уравнения (1) и (2) поочередно координаты точек и проверить, обращаются ли они в верные равенства. строго говоря, для нахождения координат точек пересечения в нашем случае решается система уравнений (1), (2): (1) (2) Два уравнения, два неизвестных.
Приравнивая правые части (1), (2) получаем одно уравнение с одним неизвестным: Приводим подобные слагаемые. (3) Решаем полученное уравнение (3) Соответствующие им значения y1, y2 можно найти, подставив например значения x1, x2 в уравнение (2) Вот мы и получили две точки А0(x1; y1), A2(x2, y2) Они нам понадобятся при простановке пределов интегрирования. Так теперь Разберемся, что получится, если нашу фигуру вращать вокруг оси OX. Смотрим риснуок 2 (FIGURE_OX.png), На котором изображено поперечное сечение, полученной фигуры вращения. Такая "чаша", со стенками переменной толщины. В сечении наша исходная фигура (параболический сегмент) зеркально отразилась относительно оси OX. Точки с координатами (x, y) отразились в точки (x, -y). Соответственно прямая y=x+1 отразилась в y=-x-1, а парабола в параболу . Объем "чаши" будет равен: (4) где объем фигуры ограниченной, параболами и плоскостью перпендикулярной плоскости рисунка и проходящей через прямую . ? , объем конуса ограниченного прямыми и той же плоскостью проходящей через
Если нашу "чашу" без выемки конуса "нашинковать" плоскостями перпендикулярными плоскости рисунка и при этом параллельными плоскости основания конуса, мы разбиваем ее на множество мелких ("блинов") элементарных цилиндров толщиной dx. Объем каждого такого цилиндра будет равен: Суммарный объем будет равен сумме объемов элементарных цилиндров. Переходя к пределу при dx⇒0 получаем: (5) (6) (7) С учетом (7) интеграл (6) равен: (8)
Аналогично объем конуса равен (9) Проделывая вычисления находим: (10) Тогда с учетом (4), (8), (10) искомый объем равен:
Вкратце по 2му пункту смотрите рисунок 3 (FIGURE_OY). Тут наша фигура получилась более "хитрая". Придется, дробить область на части
Сам объем будем искать в виде такой суммы: Объем усеченного "криволинейного конуса" (сечение А9, А1, А2, А8) - Объем конуса (А9, А0, А1) + объем ус. конуса(А2, А3, А5, А7) + объем "криволинейного конуса"(А3, А4, А6, А7) - объем "криволинейного конуса" (А5, А4, А6).
Черт возьми! >5000 символов не лезет. Но надеюсь, принцип ясен.
1 Действие: Найдем расстояние по течению и против течения. За х возьмем расстояние по течению, тогда( х - 32) расстояние по течению и получаем: х + ( х - 32) =88 Найдем х: х + ( х - 32) =88 2х=120 х=60км А тогда против он км 2 действие: получаем что за 2 часа против течения он проходит 28 км, а за 3 часа по течению 60 км, и следовательно находим скорость : Скорость против течения получается 14 км/ч, а скорость по течению 20 км/ч (Делим расстояние на время) обозначим скорость катера х, а скорость течения у.Составляем систему: х+у=20 (по течению) х-у=14 (против течения) получаем: 2х=34 х=17км/ч - скорость катера А тогда скорость скорость течения 20-х=у у=3 км/ч ответ: скорость катера 17 км/ч скорость течения 3 км/ч
Многочлен стандартного вида - это многочлен, в котором все слагаемые имеют стандартный вид и в котором приведены подобные слагаемые (имеют одинаковую буквенную часть).
Степень многочлена - это степень наибольшего одночлена, в ходящего в многочлен.
1) 22а² - 40а³ + 18а² + 29а³ + а⁴ = а⁴ - 11а³ + 40а²; степень - 4;
2) -7b⁵ - 13b⁶ + 15 - 9b⁵ + 34b⁶ = 21b⁶ - 16b⁵ + 15; степень - 6;
3) 41c² + 62c³ - 99 - 42c² + 38c³ = 100c³ - c² - 99; степень - 3;
4) -52k + k⁴ - 18k⁴ + 52 - k = -17k⁴ - 53k + 52; степень - 4.