Мы имеем ограничения — корни и знаменатель. Проблема в том, что для числителя правой части сложно написать адекватное ОДЗ. А можно ли обойтись без него?
Оказывается, можно. Достаточно записать, что:
![\left \{ {{7-x\geq 0} \atop {x-10}} \right. \Rightarrow x\in(1;7]](/tpl/images/0450/0668/e88fe.png)
Возведём в квадрат обе части (так как они положительны, имеем право сделать это) и посмотрим, что получится:

Дробь положительна, если и числитель, и знаменатель имеют одинаковый знак. По ограничению, которое мы записали выше, знаменатель положителен, значит, числитель обязан быть положительным, то есть это страшное ОДЗ выполняется автоматически. Теперь можно решить получившееся неравенство:

Пересекая полученное решение с ограничениями, получим правильный ответ.
ответ: ![(1;2)\cup(3;7]](/tpl/images/0450/0668/a5885.png)
a(2a+b)(a+b)-4a(a+b)²= а(а+b)(2a+b-4(a+b)=a(a+b)(2a+b-4a-4b)=a(a+b)(-2a-3b)