М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
79025585606
79025585606
01.08.2021 23:28 •  Алгебра

Только подробно) √(√(х+13))=√(17-3√(х))

👇
Ответ:
√(√(x+13))=√(17-3√x)
1)
{x+13≥0;x≥-13
{x≥0
{17-3√x≥0
3√x≤17
√x≤17/3
x≤289/9
x≤32,1
-13032,1___
=>x€(0;32,1)
2)(√(√(x+13))⁴=(√(17-3√x))⁴

x+13=(17-3√x)²

x+13=289-102√x+9x

102√x-8x-276=0

51√x-4x-138=0

4(√x)²-51√x+138=0

D=51²-4*4*138=2601-2208=393
√x=((51±√393)/8)>0

x1=((51+√393)/8)²=((51+19,8)/8)²=8,85²=78,3

x2=((51-√393)/8)²=((51-19,8)/8)²=3,9²=15,21

3)x1¢(0,32,1)
x2€(0,32,1)
OTBET x=15,2
4,8(51 оценок)
Открыть все ответы
Ответ:
bodisss
bodisss
01.08.2021
20(x²-6x-9)²=x(x²-4x-9)
(x²-6x-9)²-x(x²-4x-9)=0
(x²-6x)²-2(x²-6x)·9+9²-x³+4x²+9x=0
x⁴-12x³+36x²-18x²+108x+81-x³+4x²+9x=0
x⁴-13x³+22x²+117x+81=0
подставив вместо х=-1 убеждаемся, что 1+13+22-117+81=0 - верно
Значит х=-1 - корень данного уравнения
Делим x⁴-13x³+22x²+117x+81 на (х+1)
 получим х³-14х²+36х+81
Итак,
 x⁴-13x³+22x²+117x+81=(х+1)·(х³-14х²+36х+81)
корни многочлена
х³-14х²+36х+81
следует искать среди делителей свободного коэффициента 81

Это числа ±1;±3;±9
Подставим х=9 и убеждаемся, что 9³-14·9²+36·9+81=81(9-14+4+1)=81·0=0
х=9 - корень данного уравнения
х³-14х²+36х+81 делим на (х-9)
получим х²-5х-9
Осталось разложить на множители последнее выражение
х²-5х-9=0
D=25+36=61
x=(5-√61)/2    или  х=(5+√61)/2

Окончательно
x⁴-13x³+22x²+117x+81=0  ⇒(х+1)·(х³-14х²+36х+81)=0⇒(х+1)(х-9)(х²-5х-9)=0⇒ х₁=-1  или х₂=9   или x₃=(5-√61)/2    или  х₄=(5+√61)/2
4,4(79 оценок)
Ответ:
lyazkaiman0309
lyazkaiman0309
01.08.2021
20(x²-6x-9)²=x(x²-4x-9)
(x²-6x-9)²-x(x²-4x-9)=0
(x²-6x)²-2(x²-6x)·9+9²-x³+4x²+9x=0
x⁴-12x³+36x²-18x²+108x+81-x³+4x²+9x=0
x⁴-13x³+22x²+117x+81=0
подставив вместо х=-1 убеждаемся, что 1+13+22-117+81=0 - верно
Значит х=-1 - корень данного уравнения
Делим x⁴-13x³+22x²+117x+81 на (х+1)
 получим х³-14х²+36х+81
Итак,
 x⁴-13x³+22x²+117x+81=(х+1)·(х³-14х²+36х+81)
корни многочлена
х³-14х²+36х+81
следует искать среди делителей свободного коэффициента 81

Это числа ±1;±3;±9
Подставим х=9 и убеждаемся, что 9³-14·9²+36·9+81=81(9-14+4+1)=81·0=0
х=9 - корень данного уравнения
х³-14х²+36х+81 делим на (х-9)
получим х²-5х-9
Осталось разложить на множители последнее выражение
х²-5х-9=0
D=25+36=61
x=(5-√61)/2    или  х=(5+√61)/2

Окончательно
x⁴-13x³+22x²+117x+81=0  ⇒(х+1)·(х³-14х²+36х+81)=0⇒(х+1)(х-9)(х²-5х-9)=0⇒ х₁=-1  или х₂=9   или x₃=(5-√61)/2    или  х₄=(5+√61)/2
4,8(38 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ